

HORLOGES OPTIQUES

Jérôme Lodewyck

Systèmes de Référence Temps-Espace

PRINCIPE D'UNE HORLOGE ATOMIQUE

- Oscillateur :
 - \rightarrow onde électromagnétique (micro-onde : 9,2 GHz, laser : 429 THz)
 - ightarrow asservie sur un résonateur macroscopique (oscillateur cryo., cavité

FP de grande finesse)

PRINCIPE D'UNE HORLOGE ATOMIQUE

- Oscillateur :
 - \rightarrow onde électromagnétique (micro-onde : 9,2 GHz, laser : 429 THz)
 - \rightarrow asservie sur un résonateur macroscopique (oscillateur cryo., cavité

FP de grande finesse)

Référence de fréquence :

 \rightarrow transition atomique (micro-onde : Cs, Rb; optique : Sr...)

PRINCIPE D'UNE HORLOGE ATOMIQUE

- Oscillateur :
 - \rightarrow onde électromagnétique (micro-onde : 9,2 GHz, laser : 429 THz)
 - \rightarrow asservie sur un résonateur macroscopique (oscillateur cryo., cavité
 - FP de grande finesse)

- Référence de fréquence :
 - \rightarrow transition atomique (micro-onde : Cs, Rb; optique : Sr...)
- Performances :
 - \rightarrow exactitude = incertitude sur les effets systématiques ϵ
 - \rightarrow stabilité = fluctations résiduelles de fréquence $\delta \nu(t)$

1 ÉTAT DE L'ART

- 2 OSCILLATEUR ULTRA-STABLE
- **3** Horloges à réseau optique : effets du piège
- **4** Comparaison d'horloges optiques
- **5** Stabilité : perspectives

1 ÉTAT DE L'ART

- 2 OSCILLATEUR ULTRA-STABLE
- **3** Horloges à réseau optique : effets du piège
- **4** Comparaison d'horloges optiques
- **5** STABILITÉ : PERSPECTIVES

MOTIVATION POUR LES FRÉQUENCES OPTIQUES

- HORLOGES MICRO-ONDE (fontaines) à leurs performances ultimes exactitude = $3, 8 \times 10^{-16}$, stabilité = $1, 6 \times 10^{-14} / \sqrt{\tau}$
- Tests de variation des contantes fondamentales (α , PRL 90 150801)

MOTIVATION POUR LES FRÉQUENCES OPTIQUES

- HORLOGES MICRO-ONDE (fontaines) à leurs performances ultimes exactitude = $3, 8 \times 10^{-16}$, stabilité = $1, 6 \times 10^{-14} / \sqrt{\tau}$
- HORLOGES OPTIQUES : fréquence 10^4 à 10^5 fois plus élevée \Rightarrow en valeur relative, les effets sont réduits !
- Mais Les effets motionnels (Doppler) restent...
 - \Rightarrow piégeage nécessaire.

Ions piégés :

Piégeage d'un ion dans un piège de paul (champ RF)

- Piège peu perturbateur \Rightarrow excellente exactitude Al⁺ NIST : 9 × 10⁻¹⁸
- Stabilité à l'état l'art (3 × 10⁻¹⁵/√τ)
 Mais limitée par le bruit de projection quantique (1 seul ion)

Ions piégés :

Piégeage d'un ion dans un piège de paul (champ RF)

- Piège peu perturbateur ⇒ excellente exactitude Al⁺ NIST : 9×10^{-18}
- Stabilité à l'état l'art $(3 \times 10^{-15}/\sqrt{\tau})$ Mais limitée par le bruit de projection quantique (1 seul ion)

En développement :

- NIST : AI⁺, AI⁺, Hg⁺
- Europe : PTB, NPL, ...
- France : Université de Provence (Ca⁺)

Ions piégés :

Piégeage d'un ion dans un piège de paul (champ RF)

- Piège peu perturbateur ⇒ excellente exactitude AI^+ NIST : 9 × 10⁻¹⁸
- Stabilité à l'état l'art (3 × 10⁻¹⁵/√τ)
 Mais limitée par le bruit de projection quantique (1 seul ion)

En développement :

- NIST : AI⁺, AI⁺, Hg⁺
- Europe : PTB, NPL, ...
- France : Université de Provence (Ca⁺)

ATOMES NEUTRES : Horloges à réseau optique développées depuis 2003

- Piège intense ⇒ perturbateur, mais contrôlé
- Exact. : 2×10^{-16} , en progrès
- Grand nombre d'atomes (10⁴) ⇒ stabilité ultime élevée Actuellement $2 \times 10^{-15} / \sqrt{\tau}$

Ions piégés :

Piégeage d'un ion dans un piège de paul (champ RF)

- Piège peu perturbateur ⇒ excellente exactitude AI^+ NIST : 9 × 10⁻¹⁸
- Stabilité à l'état l'art (3 × 10⁻¹⁵/√τ)
 Mais limitée par le bruit de projection quantique (1 seul ion)

En développement :

- NIST : AI⁺, AI⁺, Hg⁺
- Europe : PTB, NPL, ...
- France : Université de Provence (Ca⁺)

ATOMES NEUTRES : Horloges à réseau optique développées depuis 2003

- Piège intense ⇒ perturbateur, mais contrôlé
- Exact. : 2×10^{-16} , en progrès
- Grand nombre d'atomes (10⁴) ⇒ stabilité ultime élevée Actuellement $2 \times 10^{-15} / \sqrt{\tau}$

) En développement :

- Sr : Tokyo, JILA, SYRTE, PTB
- Yb : NIST, NMIJ, INRIM
- Hg : SYRTE
- Sr : Chine, Japon, NPL, Florence, Birmingham...

HORLOGES À RÉSEAU OPTIQUE : ÉTAT DE L'ART

Fréquence des horloges strontium

PRINCIPE DE FONCTIONNEMENT démontré au niveau de 10^{-17} (Sr, Yb) Limite fondamentale : rayonnement du corps noir

- Horloge Hg (SYRTE) ightarrow 10⁻¹⁸
- Cryogénie

TESTS DE GRAVITATION NON-RELATIVISTE couplage des constantes au champ gravitationnel $_{\mathsf{PRL}\ 100\ 140801}$

1 ÉTAT DE L'ART

2 OSCILLATEUR ULTRA-STABLE

3 Horloges à réseau optique : effets du piège

4 Comparaison d'horloges optiques

5 STABILITÉ : PERSPECTIVES

Cavité de grande finesse

Laser asservi sur une cavité Fabry-Perot de grande finesse

- Disposition horizontale (Sr), verticale (Hg)
- Corps en ULE, miroirs en silice
- Finesse = 568 000

- Double système à vide
- 3 boucliers thermiques dorés
- Compensation des vibrations

Performances

Stabilité thermique :

Performances

Stabilité thermique :

Stabilité de fréquence du laser asservi (mesurée par rapport aux atomes) :

Spectroscopie

Bandes latérales motionnelles

Spectroscopie

Bandes latérales motionnelles

RÉSONANCE D'HORLOGE

1 ÉTAT DE L'ART

- 2 OSCILLATEUR ULTRA-STABLE
- 3 Horloges à réseau optique : effets du piège
- **4** Comparaison d'horloges optiques
- **5** STABILITÉ : PERSPECTIVES

Piégeage d'atomes neutres : effets du piège

PIÉGEAGE DIPOLAIRE DANS UN RÉSEAU OPTIQUE

- Régime de Lamb-Dicke ⇒ effets motionnels négligeables
- Mais déplacement de ν qui dépend de l'intensité et de la polarisation du piège (ex. 100 kHz, ou 10⁻¹¹).
 - \rightarrow difficilement contrôlable

Piégeage d'atomes neutres : effets du piège

PIÉGEAGE DIPOLAIRE DANS UN RÉSEAU OPTIQUE

- Régime de Lamb-Dicke ⇒ effets motionnels négligeables
- Mais déplacement de *ν* qui dépend de l'intensité et de la polarisation du piège (ex. 100 kHz, ou 10⁻¹¹).
 → difficilement contrôlable

SOLUTION :

- Transition $J = 0 \longrightarrow J = 0$: peu sensible à la polarisation.
- ∃ λ_{piège} telle que les
 déplacements des deux niveaux
 d'horloges sont identiques.
- Alcalino-terreux : Sr, Yb, Hg,

EFFETS PLUS PETITS

- Décalage vector shift
- Décalage tensor shift
- Hyperpolarizabilité
- Décalage M1/E2

EFFETS PLUS PETITS

- Décalage vector shift : première observation
- Décalage tensor shift : première observation (précision de 6%)
- Hyperpolarizabilité : borne supérieure améliorée 60×
- Décalage M1/E2 : première borne supérieure
- Détermination de la longueur d'onde margique améliorée 10×

Tous ces effets sont au niveau 10^{-17} pour un piège assez profond (150 E_r)

Effets plus petits

- Décalage vector shift : première observation
- Décalage tensor shift : première observation (précision de 6%)
- Hyperpolarizabilité : borne supérieure améliorée 60×
- Décalage M1/E2 : première borne supérieure
- Détermination de la longueur d'onde margique améliorée 10 imes

Tous ces effets sont au niveau 10^{-17} pour un piège assez profond (150 E_r)

APPLICATIONS

- Repousse le niveau des perturbations aux faibles profondeurs
- Facilité d'utilisation à grande profondeur
- Possibilité de contrôler certains effets systématiques :
 - Collisions entre atomes froids favorisées par l'effet tunnel
 - Déplacement de la résonance par les bandes latérales motionnelles

1 ÉTAT DE L'ART

- 2 OSCILLATEUR ULTRA-STABLE
- 3 Horloges à réseau optique : effets du piège

4 Comparaison d'horloges optiques

5 STABILITÉ : PERSPECTIVES

COMPARAISON D'HORLOGES

- Horloge Hg en développement au SYRTE :
 - Caractérisation de la longueur d'onde magique
 - Vers l'observation de résonances fines
- Comparaison à distance :
 - Liens fibrés
 - Projet ACES

COMPARAISON D'HORLOGES

- Horloge Hg en développement au SYRTE :
 - Caractérisation de la longueur d'onde magique
 - Vers l'observation de résonances fines
- Comparaison à distance :
 - Liens fibrés
 - Projet ACES

⇒ Nouvelle horloge à réseau optique au strontium

Excellent outil pour la caractérisation des effets systématiques

- Comparaison directe (pas besoin d'un laser femto-seconde)
- Écart de fréquence nul attendu

Comparaison Strontium 1 vs Strontium 2

Stabilité

 \rightarrow Niveau de 10^{-16} en 1000 s

Comparaison Strontium 1 vs Strontium 2

Stabilité

EXACTITUDE Différence de fréquence entre Sr 2 et Sr 1 (Hz) 0 . -5 -10 -15 -20 -25 ٥ 2 6 8 10 4 Champ magnétique (G) Différence de fréquence entre Sr 2 et Sr 1 (Hz) 2 0.5 1 0 0 Écart relatif (x10⁻¹⁵) _1 -0.5 -2 -1 -3 -1.5 -4 -2 -5 -2.5 -6 -3 0 0.5 1.5 2 2.5 3

Champ magnétique (G)

 \rightarrow Niveau de 10^{-16} en 1000 s

1 ÉTAT DE L'ART

- 2 OSCILLATEUR ULTRA-STABLE
- **3** Horloges à réseau optique : effets du piège
- **4** Comparaison d'horloges optiques
- **5** Stabilité : perspectives

 $3 \ {\rm SOURCES} \ {\rm DE \ BRUITS}$ contribuent à la stabilité :

- Le bruit de projection quantique
 - ightarrow croît comme $1/Q\sqrt{N}$
 - ightarrow limitant au niveau de $10^{-15}/\sqrt{ au}$ pour les horloges à ions
 - ightarrow au niveau de $10^{-17}/\sqrt{ au}$ pour les horloges à réseau optique

 $3 \ {\rm SOURCES} \ {\rm DE \ BRUITS}$ contribuent à la stabilité :

- Le bruit de projection quantique
 - ightarrow croît comme $1/Q\sqrt{N}$
 - ightarrow limitant au niveau de $10^{-15}/\sqrt{ au}$ pour les horloges à ions
 - \rightarrow au niveau de $10^{-17}/\sqrt{\tau}$ pour les horloges à réseau optique
- Le bruit de détection
 - \rightarrow au niveau de $10^{-16}/\sqrt{\tau}$

 $3 \ {\rm SOURCES} \ {\rm DE \ BRUITS}$ contribuent à la stabilité :

- Le bruit de projection quantique
 - ightarrow croît comme $1/Q\sqrt{N}$
 - ightarrow limitant au niveau de $10^{-15}/\sqrt{ au}$ pour les horloges à ions
 - \rightarrow au niveau de $10^{-17}/\sqrt{\tau}$ pour les horloges à réseau optique
- Le bruit de détection
 - \rightarrow au niveau de $10^{-16}/\sqrt{\tau}$
- L'effet Dick : échantillonage du bruit du laser
 - \rightarrow conversion du bruit haute fréquence du laser d'horloge
 - \rightarrow Effet prédominant pour les horloges à réseau optique : $2\times 10^{-15}/\sqrt{\tau}$

 $3 \ {\rm SOURCES} \ {\rm DE \ BRUITS}$ contribuent à la stabilité :

- Le bruit de projection quantique
 - ightarrow croît comme $1/Q\sqrt{N}$
 - ightarrow limitant au niveau de $10^{-15}/\sqrt{ au}$ pour les horloges à ions
 - \rightarrow au niveau de $10^{-17}/\sqrt{\tau}$ pour les horloges à réseau optique
- Le bruit de détection
 - \rightarrow au niveau de $10^{-16}/\sqrt{\tau}$
- L'effet Dick : échantillonage du bruit du laser
 - \rightarrow conversion du bruit haute fréquence du laser d'horloge
 - \rightarrow Effet prédominant pour les horloges à réseau optique : $2\times 10^{-15}/\sqrt{\tau}$

Possibilités d'amélioration

- Amélioration du rapport cyclique de l'horloge (réduction des temps morts)
- Nouvelles cavités (plus longues, refroidies)

CONCLUSION

- Comparaison d'horloges à réseau optique
- lacksquare \to stabilité remarquable

PERPECTIVES

Encore un ordre de grandeur sur la stabilité et l'exactitude :

- Limite pour l'exactitude : BBR, $\simeq 10^{-17}$
 - \rightarrow Horloge Hg, cryogénie
- Stabilité de $\simeq 10^{-16}/\sqrt{ au}$ avec une séquence optimisée

APPLICATIONS

Participation au segment sol de Pharao/ACES

- \rightarrow Comparaisons internationales d'horloges
- \rightarrow Tests de physique fondamentale (relativiste)