Benoît Noyelles

Collaborateurs : S. D'Hoedt, J. Dufey, A. Lemaître & N. Rambaux

Facultés Universitaires Notre-Dame de la Paix & FNRS Namur, BELGIQUE

GRAM 2010 - Nice

(日) (日) (日) (日) (日) (日) (日)

Introduction

Mercure

- Résonance spin-orbite 3 : 2
- Excentricité \approx 0.206
- Période orbitale: 88 jours (rotation en 58 jours)
- Période du périhélie: ≈235000 ans
- Cible de 2 missions spatiales: MESSENGER et Bepi-Colombo (2014)

Introduction

Observations de sa rotation

Ce qu'on sait

- 1965 : Mercure est en résonance spin-orbite 3 : 2 (Pettengill & Dyce)
- 2007 : Librations en longitude de 88 jours à 35.8 \pm 2 arcsec (Margot et al.)
 - \rightarrow Mercure a un noyau liquide
 - Obliquité = 2.11 ± 0.1 arcmin

Ce qu'on espère observer

- Perturbations planétaires dans les librations en longitude
- Champ de gravité de Mercure (*J*₂, *C*₂₂, *S*₂₂, etc.)

Introduction

Observations de sa rotation

Ce qu'on sait

- 1965 : Mercure est en résonance spin-orbite 3 : 2 (Pettengill & Dyce)
- 2007 : Librations en longitude de 88 jours à 35.8 \pm 2 arcsec (Margot et al.)
 - \rightarrow Mercure a un noyau liquide

Obliquité = 2.11 ± 0.1 arcmin

Ce qu'on espère observer

- Perturbations planétaires dans les librations en longitude
- Champ de gravité de Mercure (*J*₂, *C*₂₂, *S*₂₂, etc.)

Introduction d'un noyau fluide

Première approximation: un noyau liquide sphérique

- Pas d'interaction noyau-manteau
- Mercure = un manteau avec une cavité vide

Conséquences

- Devrait convenir pour le mouvement à court terme (librations en longitude)
- Mercure doit être considérée comme rigide sur le long terme (variations de l'obliquité)

(日) (日) (日) (日) (日) (日) (日)

Introduction d'un noyau fluide

Première approximation: un noyau liquide sphérique

- Pas d'interaction noyau-manteau
- Mercure = un manteau avec une cavité vide

Conséquences

- Devrait convenir pour le mouvement à court terme (librations en longitude)
- Mercure doit être considérée comme rigide sur le long terme (variations de l'obliquité)

Un noyau triaxial

 $\epsilon_1 = \frac{2C - A - B}{2C} = J_2 \frac{MR^2}{C}$ $\epsilon_2 = \frac{B - A}{2C} = 2C_{22} \frac{MR^2}{C}$ $\epsilon_3 = \frac{2C_c - A_c - B_c}{2C_c}$ $\epsilon_4 = \frac{B_c - A_c}{2C_c}$ $\delta = C_c/C$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Le modèle dynamique

- Un noyau fluide de densité uniforme couplé avec un manteau rigide (modèle de Poincaré-Hough, cf. Touma & Wisdom (2001))
- Les ellipsoïdes d'inertie du manteau et du noyau sont alignés
- La rotation de Mercure est perturbée par l'attraction gravitationnelle du Soleil

(日) (日) (日) (日) (日) (日) (日)

Le Hamiltonien du problème

$$\begin{split} \mathcal{H} &= \frac{n}{2(1-\delta)} \left(P^2 + \frac{P_c^2}{\delta} + 2\sqrt{PP_c} (\eta_1\eta_2 - \xi_1\xi_2) + 2 \left(P\frac{\xi_2^2 + \eta_2^2}{2} + P_c\frac{\xi_1^2 + \eta_1^2}{2} - PP_c \right) \right) \\ &+ \frac{n\epsilon_1}{2(1-\delta)^2} \left(P(\xi_1^2 + \eta_1^2) + P_c(\xi_2^2 + \eta_2^2) + 2\sqrt{PP_c} (\eta_1\eta_2 - \xi_1\xi_2) \right) \\ &+ \frac{n\epsilon_2}{2(1-\delta)^2} \left(P(\xi_1^2 - \eta_1^2) + P_c(\xi_2^2 - \eta_2^2) - 2\sqrt{PP_c} (\eta_1\eta_2 + \xi_1\xi_2) \right) \\ &- \frac{n\epsilon_3}{2(1-\delta)^2} \left(\delta P(\xi_1^2 + \eta_1^2) + \left(2 - \frac{1}{\delta}\right) P_c(\xi_2^2 + \eta_2^2) + 2\delta\sqrt{PP_c} (\eta_1\eta_2 - \xi_1\xi_2) \right) \\ &+ \frac{n\epsilon_4}{2(1-\delta)^2} \left(\delta P(\eta_1^2 - \xi_1^2) + \left(2 - \frac{1}{\delta}\right) P_c(\eta_2^2 - \xi_2^2) + 2\delta\sqrt{PP_c} (\eta_1\eta_2 + \xi_1\xi_2) \right) . \\ &- \frac{3}{2} \frac{GM}{nd^3} (\epsilon_1(x^2 + y^2) + \epsilon_2(x^2 - y^2)) \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Les résultats

Les fréquences propres

Les variables canoniques

$$\begin{array}{ll} p = l + g + h, & P = \frac{G}{nC}, \\ r = -h, & R = P(1 - \cos K), \\ \xi_1 = -\sqrt{2P(1 - \cos J)} \sin l, & \eta_1 = \sqrt{2P(1 - \cos J)} \cos l, \\ \xi_2 = \sqrt{2P_c(1 + \cos J_c)} \sin l_c, & \eta_2 = \sqrt{2P_c(1 + \cos J_c)} \cos l_c. \end{array}$$

ϵ_3/ϵ_1	0	0.1	1	3	3
ϵ_4/ϵ_2	0	0	1	3	0
T_u (a)	12.05800	12.05775	12.05772	12.05777	12.05773
T_v (a)	615.77	(long)	1636.43	1214.91	1216.09
T_w (a)	337.82	337.82	337.87	338.14	338.20
T_z (j)	_	58.630	58.619	58.585	58.585

Résonance exacte: 58.646 jours

Les résultats

Les fréquences propres

Les variables canoniques

$$\begin{array}{ll} p = l + g + h, & P = \frac{G}{nC}, \\ r = -h, & R = P(1 - \cos K), \\ \xi_1 = -\sqrt{2P(1 - \cos J)} \sin l, & \eta_1 = \sqrt{2P(1 - \cos J)} \cos l, \\ \xi_2 = \sqrt{2P_c(1 + \cos J_c)} \sin l_c, & \eta_2 = \sqrt{2P_c(1 + \cos J_c)} \cos l_c. \end{array}$$

ϵ_3/ϵ_1	0	0.1	1	3	3
ϵ_4/ϵ_2	0	0	1	3	0
<i>T_u</i> (a)	12.05800	12.05775	12.05772	12.05777	12.05773
T_v (a)	615.77	(long)	1636.43	1214.91	1216.09
T_w (a)	337.82	337.82	337.87	338.14	338.20
T_z (j)	_	58.630	58.619	58.585	58.585

Résonance exacte: 58.646 jours

Les résultats

Librations libres de l'obliquité L'influence d'une résonance

Les résultats

Le mouvement en longitude

Ν	I _o	I_{v}	le	lj	ls	ϖ	Période	Amplitude	Ratio
1	-	-	-	1	-	-	11.862 y	43.711 as	1.2193
2	1	-	-	-	-	-	87.970 d	35.848 as	1.0000
3	2	-	-	-	-	-	43.985 d	3.754 as	0.1047
4	2	-5	-	-	-	2	5.664 y	3.597 as	0.1003
5	-	-	-	-	2	-	14.729 y	1.568 as	0.0437
6	-	-	-	2	-	-	5.931 y	1.379 as	0.0385
7	1	-	-4	-	-	1	6.575 y	0.578 as	0.0161
8	3	-	-	-	-	-	29.323 d	0.386 as	0.0108

(Dufey et al. 2009, Peale et al. 2009)

INDÉPENDANT DE LA FORME DU NOYAU

Les résultats

L'obliquité du manteau

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Les résultats

Le mouvement du pôle

$$Q_{1} = R_{p} \sin J_{m} \sin I_{m} [1 + (C_{m} - A_{m})/C_{m}]$$
$$Q_{2} = R_{p} \sin J_{m} \cos I_{m} [1 + (C_{m} - B_{m})/C_{m}]$$

Les résultats

Le noyau

▲□▶▲□▶▲□▶▲□▶ = つくぐ

Modélisation de la rotation de Mercure pour la mission Bepi-Colombo Implémentation pour la mission BepiColombo

Notre participation dans BepiColombo

Mercury Orbiter RadioScience Experiment (MORE)

- Embarqué sur le MPO (Mercury Planetary Orbiter)
- PIs : L. less (Rome) & A. Milani (Pise)

Notre travail avec Pise

- Réalisation d'un simulateur des expériences de relativité générale, détermination du champ de gravité de Mercure et de sa rotation
- À Namur : on modélise la rotation

Modélisation de la rotation de Mercure pour la mission Bepi-Colombo Implémentation pour la mission BepiColombo

Inclusion de la rotation dans le simulateur

Notre travail

- Job : fournir la matrice de passage de l'écliptique J2000 au repère des axes principaux d'inertie de Mercure à toute date de la mission (ainsi que ses dérivées partielles)
- Objectif : inverser pour obtenir la taille du noyau ainsi que le moment d'inertie polaire

Problèmes techniques

- Modéliser à la fois les librations en longitude et l'obliquité
- Ne pas avoir de librations libres dans le modèle

Inclusion de la rotation dans le simulateur

Notre travail

- Job : fournir la matrice de passage de l'écliptique J2000 au repère des axes principaux d'inertie de Mercure à toute date de la mission (ainsi que ses dérivées partielles)
- Objectif : inverser pour obtenir la taille du noyau ainsi que le moment d'inertie polaire

Problèmes techniques

- Modéliser à la fois les librations en longitude et l'obliquité
- Ne pas avoir de librations libres dans le modèle

Modélisation de la rotation de Mercure pour la mission Bepi-Colombo Implémentation pour la mission BepiColombo

Élimination des librations libres

1ère idée : Introduction d'une dissipation

- Fonctionne très bien en longitude car dissipation "suffisamment" lente
- Ne fonctionne pas en obliquité

Solution : Ajustement des conditions initiales

- Décomposition de l'obliquité sous forme de séries sinusoïdales à longue période
- Ajustement de l'amplitude sous la forme

$$\mathbf{A} = \frac{\mathbf{C}/(\mathbf{MR}^2)}{\beta + \gamma \mathbf{C}_{20} + \delta \mathbf{C}_{22}}$$

Conclusion

Conclusions et perspectives

Conclusions

- La forme du noyau ne peut pas être déterminée par des observations des mouvements longitudinaux et polaires
- La dynamique du noyau est soumise à la proximité d'une résonance
- L'obliquité devrait permettre de trouver le moment d'inertie polaire

Perspectives : en attente de MESSENGER...

- Insertion orbitale : 18 mars 2011
- Données des 3 flybys insuffisantes
- Lancement de BepiColombo : 2014

Références

Pour en savoir plus...

- D'Hoedt S., Noyelles B., Dufey J. & Lemaître A., 2009, Determination of an instantaneous Laplace plane for Mercury's rotation, Advances in Space Research, 44, 597-603
- Dufey J., Lemaître A. & Rambaux N., 2008, Planetary perturbations on Mercury's libration in longitude, CM&DA, 101, 141-157
- Dufey J., Noyelles B., Rambaux N. & Lemaître A., 2009, Latitudinal librations of Mercury with a fluid core, Icarus, 203, 1-12
- Noyelles B., Dufey J. & Lemaître A., 2010, Core-mantle interactions for Mercury, MNRAS, 407, 479-496