

Exploration du trou noir au centre de la Galaxie avec GRAVITY

Guy Perrin

aboratoire d'Études Spatiales et d'Instrumentation en Astrophysiqu

Mardi 30 novembre 2010

La masse de Sgr A*

La boucle d'Optique Adaptative

Un miroir <u>déformable</u> corrige à tout instant le front d'onde incident

> Un calculateur spécialisé <u>optimise</u> la correction

Un senseur analyse les erreurs résiduelles

Le front d'onde corrigé peut être focalisé

Le VLT, *Very Large Telescope* 4 télescopes européens de 8 m au Mont Paranal au Chili

Sgr A* est très atténué

- $A_v = 32$
- Observations dans l'infrarouge

Calcul précis de la masse de Sgr A* (orbites 3D, imagerie et spectroscopie)

3^{ème} loi de Kepler : GM_{SgrA^*} a^3 $T^{\overline{2}}$ $4\pi^2$ $M_{Sgr A*} = 3,61 \pm 0,32 \times 10^{6} M_{Soleil}$ $(d = 7,62 \pm 0,32 \text{ kpc})$

Application de la

La nature de Sgr A*

Les sursauts de Sgr A*

Genzel et al. (2003)

Sursauts en fonction du temps

• Trou noir central actif ~ 1 fois par nuit

• Période minimu de ~ 20 minutes

Genzel et al. (2003)

Vers la compréhension des sursauts

Sursaut lumineux : matière chauffée sur une (la dernière) orbite circulaire (stable) (30 µas avec J=0)

Période du sursaut : période de l'orbite

Outil *fantastique* pour l'étude de la théorie de la relativité générale en champ fort.

Le *point chaud* joue le rôle de particule test et révèle l'espace-temps autour de Sgr A*.

Eckart et al. A&A 500, 935 (2009)

Aller plus loin grâce à l'information spatiale

- Apporter définitivement la preuve du trou noir : montrer que la masse est contenue dans 1 Rayon de Schwarzschild
- Comprendre la nature des sursauts
- Utiliser le trou noir comme un laboratoire unique pour la relativité générale en champ fort

Échelle ~ 1 Rs $10 \mu as$

- Étudier les effets relativistes sur les orbites d'étoiles proches
- Comprendre la nature des étoiles S et leur distribution

Échelle ~ 100 Rs 1 mas

GRAVITY – interféromètre à 4 télescopes géants (General Relativity viA Vlt InterferomeTrY)

Consortium GRAVITY

Amorim, Araujo-Hauck, Bartko, Baumeister, Berger, Brandner, Carvas, Cassaing, Chapron, Choquet, Clénet, Collin, Dodds-Eden, Eckart, Eisenhauer, Fédou, Fischer, Gendron, Genzel, Gillessen, Gräter, Hamaus, Haubois, Haug, Hippler, Hofmann, Hormuth, Houairi, Ihle, Jocou, Kellner, Kervella, Klein, Kolmeder, Lacour, Lapeyrère, Laun, Lenzen, Lima, Moratschke, Moulin, Naranjo, Neumann, Patru, Paumard, Perraut, Perrin, Pfuhl, Rabien, Ramos, Reess, Rohloff, Rousset, Sevin, Sturm, Straubmeier, Thiel, Vincent, Wiest, Zanker-Smith, Ziegleder, Ziegler

Principe de la mesure GRAVITY

Étude des orbites des étoiles les plus proches (pas trop difficile)

L'amas central (60 mas) est résolu à une échelle de 1 mas = 100 R_g

1 nuit d'observation

Réponse impulsionnelle

Image brute

Après déconvolution

Paumard et al. (2005)

Étude des orbites des étoiles les plus proches (pas trop difficile)

L'amas central (60 mas) est résolu à une échelle de 1 mas = 100 R_g

Après 15 mois d'observation

Précession relativiste dans la métrique de Schwarzschild

Le test de la calvitie des trous noirs

Trou noir en rotation \rightarrow précession de l'orbite accrue (effet Lense-Thirring) et précession du plan orbital (J et Q₂)

Théorème de calvitie des trous noirs de Wheeler : un trou noir est déterminé par 3 paramètres : Masse M, Spin J, Charge Moment quadripôlaire $Q_2 = -J^2 / M$

Astrométrie interférométrique

La distance entre les interférogrammes vaut :

 $\Delta_{\rm ddm} = \mathbf{B} \times \Delta S$

D'où :

 $\Delta S = \Delta_{\rm ddm} / \rm B$

Avec une précision de 5 nm sur Δ_{ddm} pour une base de 100 m, la précision sur ΔS est de 10 µas.

Soit une pièce d'un € sur la Lune.

Contrainte de la dernière orbite circulaire stable par astrométrie (*plus difficile*)

Dispersion des positions mesurées par astrométrie

Dispersions attendues Pour une orbite de 30 µas

Diamètre de l'orbite dépend de J → mesure de J

Vincent et al. (2010)

En guise de conclusion, où en est-on ?

Concept Design Review : Preliminary Design Review : Final Design Review : Premiers tests à Paranal : Décembre 2007 Décembre 2009 Septembre 2011 2014

De premiers résultats sur Sgr A* dans 5 ans.

Orbites d'étoiles S observées par le VLT autour de Sgr A*

Schödel et al. (2002)

Orbites d'étoiles S observées par le VLT autour de <u>Sgr A*</u>

Schödel et al. (2002)

Sursaut calculé par Frédéric Vincent avec GYOTO (1200 h de calcul) Inclinaison de l'orbite = 70° Trou noir statique. Dernière orbite circulaire stable. Distance observateur = 50 R_{s}

