Absolute calibration of the MOBLAS laser station at Tahiti for the T2L2 experience

CNES

Toulouse-Paris – France

P. Guillemot: Mission Center CMIC. Jayles : DORISS. Leon: ProgramD. Said: OperationD. Vergnoux: Quality

OP

Paris- France

J.Achkar: TT Comparison M. Abgrall: TT Comparison K. Djeroud: FTLRS P. Laurent: TT Comparison D. Rovera: TT Comparison P. Uhrich : TT Comparison

CENTRE NATIONAL D'ÉTUDES SPATIALES

OCA -UMR GeoAzur Grasse – France E. Samain: Prime Investigator D. Albanese: Optics F. Baumont: Time C. Courde: Campaign, Laser P. Exertier: Data Analysis CMS M. Laaz Bourez: Data Analysis O. Minazzoli: Fond. Physics IL. Oneto: time J. Paris: Software F. Pierron: FTLRS J.M. Torre: Laser sations ILRS

Summary

• Description of the T2L2 experience

- » T2L2 principle
- » T2L2 space instrument
- » Tahiti campaign
- Absolute calibration of the MOBLAS and the FTLRS laser station
 - » Calibration principle
 - » Local configuration
 - » Implementation

Time Transfer by Laser Link (T2L2) Principle

- T2L2 is a 2 way technique based on the timing of optical pulses emitted (and received) by a laser station and received by a space segment
- Ground : $T_{start} T_{return}$ Space : T_{board}
- From these 3 dates : Difference between the ground and space clock

Laser Station → Energy 400 µJ -> 200 mJ → PulseWidth 20 -> 200 ps

T2L2 Space instrument

• T2L2 was launched in June 2008 on Jason2 (1330 km)

- Electronic module (8.2 kg / 50 W / 280x270x150 mm) :
 - » Event timer: Repeatability error < 2 ps rms
 - » Some parts of the detection
 - $\implies Inside the satellite$
- Optical module (2.2 kg / 2 W / 182x143x102 mn
 - » Detection modules: Field of View 110°, λ = 532 nm
 - » Corner cube (Jason2)
 - » Link to the electronic module by optical fiber
 - \implies Outside the satellite

 No evolution nor degradation of performances are observable since the launch

Tahiti campaign

5

Tahiti campaign

- Objectives
 - » T2L2 FTLRS -Moblas time transfer collocation
 - » T2L2 DORIS Inter comparison
 - Monitor the DORIS oscillator
 - Improve DORIS navigation
 - » Remote control of the onboard DORIS oscillator over a region currently not observed
- Duration of the mission
 - » 4 6 months since may 2011

Absolute calibration of laser station

- Time and Space references
 - » Laser station
 - The reference point is the cross axes of the telescope which is also the space reference for laser ranging
 - Laser ranging is based on that point thanks to an internal calibration on an external target (corner cub)
 - » Time and frequency lab
 - PPS distribution unit

• Objective :

To measure *the delay* between the optical pulse at the cross axe of the telescope and the electrical reference coming from the Time and frequency lab

Absolute calibration of laser station

• Time equation that allows to date accurately laser pulses is given by: $\delta_{T} = \delta_{cal} + \delta_{prg}$ δ_{cal} : difference between absolute measurement (calibration) and station measurement δ_{prg} : global propagation between cross axes and the PPS unit. = $\delta_{PPS} - (\delta_{ocx} + \delta_{ocf} + \delta_{f} + \delta_{det})$

Determination of the term δprg

- $\delta_{\text{prg}} = \delta_{\text{PPS}} (\delta_{\text{ocx}} + \delta_{\text{ocf}} + \delta_{\text{f}} + \delta_{\text{det}})$
- δ_{PPS ;} δ_f: propagation in cables/fiber
 » Measured by the calibration station
- δ_{ocx ;} δ_{ocf} : propagation in free space
 » Determined form the geometrical distance

- δ_{det} : Propagation in the detector (optical-electrical)
 - » Deduced form a propagation model (currently studied)

Determination of the term δ cal

PPS Synchronization of the SigmaTime STX301 event timer

- » Scan of the PPS signal by the event timer
- » Reference threshold from the inflexion point
- » Synchronization of the timer with this Reference threshold
- Simultaneous acquisition of laser pulses from
 - » Laser station
 - » Calibration station

SigmaTime Event Timer STX301 Performances

- Time Stability @ 1000s: < 20 fs
- Linearity: 0.3 ps rms.
- Thermal Sensit. < 200 fs/°C
- Repeatability error
 - » Synchronous : 600 fs rms
 - » Random : 700 fs rms
- Rate
 - » Dead time: 130 ns
 - » High speed Acquisition : 500 kHz
 - » Continuous rate 35 kHz
- contact@sigmatime.fr

Local configuration

French Transportable Laser Ranging Station (FTLRS)

MOBile LASer Ranging System (MOBLAS)

The Geodesic Observatory of Tahiti ; Time and Frequency lab

Local configuration

French Transportable Laser Ranging Station (FTLRS)

- » The smallest station in the world
- » Laser: Nd-YAG dubbed in frequency, $\lambda = 532$ nm, 50 mJ per impulsion, repetition rate 10 Hz, pulse width 35 ps
- » Telescope diameter: 13 cm
- » Pointing error: < 10" rms
- » Detector : avalanche photodiode in Geiger mode
- » Climatic conditions of use: 5 to 40°C, jup to 95% of humidity

Local configuration

NASA MOBile LASer Ranging System (MOBLAS 8)

- » Laser : Nd-YAG dubbed in frequency, λ =532 nm, 100 mJ per impulsion, repetition rate of 5 to 10 Hz, pulse width 200 ps
- » Reception telescope diameter: 76,2 cm
- » Emission telescope diameter: 16,3 cm
- » Detector : photomultiplier

Status

- FTLRS is running since the 05/05/11
- The absolute calibration of the MOBLAS and the FTLRS laser station is done
- A technical problem on the MOBLAS station prevents ground to ground time transfer, up to now.

Thanks for your attention

Calibration budget

Budget exemple: MeO Station 01/07/2010

δ	Label/Ref	Valeur (ps)	Date
δ_{cc}	CC _{Lune}	12393	01/07/10
δ_{PPS}	T2L2CalC ₂	9408	06/08/06
δ _{ocx}	Ref _{Axe}	12104	01/07/10
δ_{ocf}	T2L2MC ₂	58	01/07/10
$\delta_{\rm f}$	T2L2CalF ₁	248300	06/08/06
δ_{stx}	STX301-001-000-C1	0	01/07/10
δ_{det}	NewFocus1454	660	01/07/10
δ_{cal}	GioveB 100522	628721	22/05/10
δτ		377007	01/07/10

- French laser stations have been calibrated
- Several laser station of the global network will be calibrate in the next future

T2L2 Web

tp://www.oca.eu/heberges/t2l2/home.htm

