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Abstract. Potential calculation is an important task to study dynamical behavior of test particles
around celestial bodies. Gravitational potential of irregular bodies is of great importance since the
discoveries of binary asteroids, this opened a new field of research. A simple model to describe
the motion of a test particle, in that case, is to consider a finite homogeneous straight segment. In
our work, we take this model by adding an inhomogeneous distribution of mass. To be consistent
with the geometrical shape of the asteroid, we explore a parabolic profile of the density. We esta-
blish the closet analytical form of the potential generatedby this inhomogeneous massive straight
segment. The study of the dynamical behavior is fulfilled by the use of Lagrangian formulation,
which allowed us to give some two and three dimensional orbits.
Keywords : Potential-Inhomogeneous distribution-Asteroids.

I- Introduction

The discovery of irregular small bodies and binary asteroids like Ida and Doctyl, gave a rise
to the potential calculation. Many attempts have been made to approximate the potential. In[1],
Riaguas et al. proposed a homogeneous straight segment. Elipe et al. described in[2] the motions
around(433) Eros with the same homogeneous model. A polyhedron and harmonic was used
by Werner and Scheeres for asteroid4769 Castalia in[3] and[4]. Ellipsoids, material points and
double material segment was used by Przemyslaw et al in[5] and[6], as the model of irregular
elongated bodies. In our work we give a new idea to models the potential generated by an elon-
gated body. We consider a straight massive segment with variable density. To be consistent with
the geometrical aspect of the asteroid, we use a parabolic profile. Our work generalize that of
Riaguas et al.[1]. In the first part of this work, we establish the closet forme of the potential gene-
rated by an inhomogeneous massive straight segment. In the second part we study the dynamical
behavior of a test particle in the field of the straight segment. We conclude in the last part by the
numerical resolution of the differential equations of motion. In this part we show some orbits in
two and three dimension.
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II- Potential calculation

We consider an inhomogeneous straight segment of length2l and massM which lies along
thex − axis, with a parabolic profile of linear mass density (Fig.1), expressed by

λ(x) = −ax2 + b (1)

in whicha andb are linked bya < b
l2

and M = −
2

3
al3 + 2bl.
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Fig. 1:Left : Straight segment in reference frame(Oxyz). Right : profile of density.

At a pointP , the gravitational potential generated by the segment is :

U(P ) = −G

∫

dm

r
(2)

WhereG is the gravitational constant.r is the distance betweenP and the infinitesimal massdm

located atH with abscissaxH in the segment. Fig.2.

1. Expression ofHP = r (Fig.2) :
Let us consider an inertial reference frame(Oxyz), and let−→r 1, and−→r 2 be the position
vectors of the end points of the straight segment. The position vector of a point of segment
is given by

−→r =
−−→
HP =

−−→
HH1 +

−−→
H1P

then
−→r = −→r1 −

1

2

(

1 +
xH

l

)

−→x 12

where
−→x 12 = 2l−→ex
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Fig. 2:Straight segment .

Next, define

ν =
1

2
(1 +

xM

l
)

as a new variable of integration with0 ≤ ν ≤ 1.
After calculation we obtain

r2 = r2

1
+ 4l2ν2 + ν

(

r2

2
− r2

1
− 4l2

)

(3)

2. Expression ofdm :
The infinitesimal massdm located atH with abscissaxH is given by

dm = λ(xH)dxH = 2l(−ax2

H + b)dν

Hence

dm = 2l(−4al2ν2 + 4al2ν + b − al2)dν (4)

By substituting(3) and(4) in (2) and developing the calculation we obtain

U(r1, r2) = 4al2G

∫

1

0

ν2 − ν −
b−al2

4al2
√

ν2 + ν
(

r2

2
−r2

1
−4l2

4l2

)

+
r2

1

4l2

dν (5)

After some laborious calculation and simplification we achieve the closet expression of the
potential generated atP :

U(r1, r2) =
G

32l2











16al3 (r2 + r1) + 12al (r2 − r1)
(

r2

1
− r2

2

)

+
[

8al2 (r2 + r1)
2
− 16al2r1r2

−3a (r1 − r2)
2 (r2 + r1)

2
− 16al4 + 32bl2

]

ln

(

r2 + r1 − 2l

r2 + r1 + 2l

)











(6)
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We defines = r2 + r1, d = r1 − r2 andp = r2r1 as a auxiliary functions depending only on
distancesr1 andr2 of the particle to the end points of the segment.

The expression(6) reduce to :

U(P ) = −
G

32l2

{

12alsd2
− 16al3s +

[

8l2a
(

s2
− 2p

)

− 3as2d2
− 16l4a + 32bl2

]

ln

(

s + 2l

s − 2l

)}

(7)

(7) represent the gravitational potential generated by an inhomogeneous straight segment with
a quadratic profile of density, this expression is our main result, to have more details and study
about see[7] Najid et al. The case of constant density[1] is a particular situation of(7), if we put
a = 0 andb = M

2l
= λ. We obtain the expression(1) in [1].

III- Dynamical study

We plane to study the dynamical behavior of a test particle, with unit mass, located atP in
the field of the inhomogeneous straight segment.
R(O, x, y, z) is the sidereal referential frame, with the cylindrical coordinates(ρ, θ, x) as in
Fig.3.

x

O

y

P

z

x

ρθ

Fig. 3:Sidereal referential and the cylindrical coordinates.

The Lagrangian of the test particle is given by :

L =
1

2

(

ρ̇2 + ρ2θ̇2 + ẋ2

)

− U(r1, r2)
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wherer1 =
√

ρ2 + (x + l)2 andr2 =
√

ρ2 + (x − l)2.

The conjugate momentum are :Pρ = ρ̇, Pθ = ρ2θ̇ andPx = ẋ.
The Lagrange’s equation corresponding to the coordinateρ is

∂L

∂ρ
= ρθ̇2

−
∂U(P )

∂ρ
= ρ̈

The differential equation of motion corresponding toρ is given by

ρ̈ = ρθ̇2 +
G

32l2p















32al2pρ ln

(

s + 2l

s − 2l

)

− 4alρs
(

3d2 + 4l2
)

−
4lρs

s2 − 4l2
[

8l2a
(

s2
− 2p

)

− 3as2d2
− 16l4a + 32bl2

]















(8)

The Lagrange’s equation corresponding to the coordinatex is

∂L

∂x
= −

∂U(P )

∂x
= ẍ

The differential equation of motion corresponding toρ is given by

ẍ =
Ga

16l2p



























2l (xs − ld)
(

3d2
− 4l2

)

+ 12lsd (ls − xd) +

[

s (xs − ld)
(

8l2 − 3d2
)

− 8l2x
(

s2
− 2p

)

+ 8l3sd − 3s2d (ls − xd)
]

ln

(

s + 2l

s − 2l

)

−
2l (xs − ld)

s2 − 4l2

[

8l2
(

s2
− 2p

)

− 3s2d2
− 16l4 +

32bl2

a

]



























(9)

The Lagrange’s equation corresponding to the coordinateθ is

∂L

∂θ
= 0

The differential equation of motion corresponding toθ is given by

ρ2θ̇ = Λ = cste (10)

The case of homogeneous profile of density,a = 0 andb = λ = M
2l

, lead to the equations

ρ̈ =
Λ2

ρ3
−

2µsρ

p (s2 − 4l2)

ẍ = −
2µx

sp

We obtain the equation(3) as in[1]. In our case of inhomogeneous straight segment(8), (9) and
(10) are strongly non linear and coupled. It need a deep numericaltreatment. In fact, it is out of
view to plane to work it out in an analytical way.
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IV- Numerical integration

To have a deep insight about the dynamical behavior of the test particle in the field of the
inhomogeneous straight segment, we have to solve(8), (9) and(10). In this system of differential
equations the unknowns areρ, θ and x. We derive some curves both, in the plan and in the space.

Fig.4, Fig.5 and Fig.6 give some orbits in the plan and in the space corresponding to different
initial conditions. We notice, in a qualitative point of view, the existence of many behavior , we
obtain the state :

– Collision,
– confined,
– not confined.

More analysis about the curves below are developed in[7] Najid et al.
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Fig. 4:Trajectories in the planyz .
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Fig. 5:Trajectories in the planxρ.
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V- Conclusion

In this work, we established the analytical expression of the potential generated by a straight
segment with a quadratic profile of its density. This potential model in an accurate manner celes-
tial elongated bodies in the solar system. We derived some curves (trajectories) both in two and
three dimensions. They gave an overview of the dynamical behavior of massless test particle. A
deep study is fulfilled in[7] Najid et al. by using the poincaré surface of section. After the achie-
vement of the dynamical behavior of a test particle in the field of that segment, fixed in space,
we plane, in a next future, to study the case where the segmentis in rotation.
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