

In-flight calibration of the MICROSCOPE space mission instrument: development of the simulator

E. Hardy, A. Levy, M. Rodrigues, P. Touboul (ONERA) G. Métris (OCA) A. Robert (CNES)

SF2A (21/06/2011)

retour sur innovation

The Equivalence Principle

MICROSCOPE $PE \rightarrow$ Universality of free fall : Accuracy of $10^{-15} \rightarrow 10^{-15}$ g all bodies, independently of their 1**0**-15 mass or intrinsic composition, Test with the highest acquire the same acceleration in accuracy and in various the same uniform gravity field conditions the hypothesis **10**⁻¹³ and laws which rule the world $\frac{M_G}{M_I} = 1$ **10**⁻¹¹ **10**-9 Quantum Mechanics, Standard model: 10-7 electromagnetic, strong, weak interaction \neq Geometrical theory of the gravitation **10**⁻⁵ Super-symmetry: Sparticules, LHC String theory, Branes... **10**⁻³ => New interaction? \Rightarrow Violation of the Equivalence principle? 1700 1800 1900 2000

$$\frac{M_G}{M_I} = 1 + \omega$$

The principle of the MICROSCOPE space mission

CNES MYRIADE Microsatellite

- Circular Orbit: 720 km, e < 5.10⁻³
- Inertial or Rotating: 7.10⁻³ rd/s
- Mission duration: 12 months
- Mass of microsat: 200 kg
- Payload budgets: 35 kg, 40 Watts
- 2 differential electrostatic accelerometers
 (2 pairs of masses: Pt/Pt & Pt/Ti)

- Gravitational source: the Earth
- inertial acceleration: orbital motion
- 2 masses of different composition: controlled on the same orbit (< 10⁻¹¹m) thanks to the measured electrostatic forces

- time span of the measurement: non limited by the free fall (> 20 orbits)
- Environment: Very controlled or avoiding perturbations, **drag-free satellite**
- Signal to be detected: phases & frequency are defined
 f_{ep} =
- Inertial mode: f_{orb} = 1/orbit
- Spinning mode: f_{orb}+ f_{spin}

Measurement principle

The accelerometer's ideal measurement is the acceleration applied to the mass to keep it centered

• Acceleration applied to a proof mass (*k*):

$$\vec{\Gamma}_{App,k} = \frac{M_{gsat}}{M_{Isat}} \vec{g}(O_{sat}) - \frac{m_{gk}}{m_{Ik}} \vec{g}(O_{k}) + R_{In,Cor} (\overrightarrow{O_{sat}O_{k}}) + \frac{\vec{F}_{NGsat}}{M_{Isat}} - \frac{\vec{F}_{Pak}}{m_{Ik}}$$

$$\vec{\frac{F}_{extsat}} = \underbrace{\left(\frac{M_{gsat}}{M_{Isat}} - \frac{m_{gk}}{m_{Ik}}\right)}_{\vec{\Gamma}_{app,k}} \vec{g}(O_{sat}) + (\mathbf{T} - \mathbf{I})\overrightarrow{O_{k}}O_{sat} - 2\overrightarrow{\Omega O_{k}}O_{sat} - \overrightarrow{O_{k}}O_{sat} + \frac{\vec{F}_{NGsat}}{M_{Isat}} - \frac{\vec{F}_{Pak}}{m_{Ik}}$$

$$\vec{\Gamma}_{app,k}$$

• Real Measured acceleration of a proof mass (*k*):

$$\overline{\Gamma_{mes,k}} = \overline{B_{0,k}} + [M_k]\overline{\Gamma_{App,k}} + K_{2,k}\Gamma_{App,k}^2 + \overline{\Gamma_{n,k}}$$

Expression of the differential measurement

The difference of measurement between the two masses gives the EP violation signal.

The test is performed at f_{ep} \rightarrow the bias can be neglected

$$\begin{aligned} \mathsf{EP}\text{-violation signal: } \delta &= \frac{m_{2g}}{m_{2I}} - \frac{m_{1g}}{m_{1I}} \\ \Gamma_{mes,dx} &= \frac{1}{2} \left(\Gamma_{mes,1} - \Gamma_{mes,2} \right) = \frac{1}{2} \frac{K_{1cx} \cdot \delta \cdot g_{x/sat}}{K_{1cx} + 2 \sum_{q_{c}} \theta_{c_{c}}} + \frac{1}{2} \begin{bmatrix} K_{1cx} \\ \eta_{cz} + \theta_{cz} \\ \eta_{cy} - \theta_{cy} \end{bmatrix}^{t} \cdot \left[T - In \right] \cdot \begin{bmatrix} \Delta_{x} \\ \Delta_{y} \\ \Delta_{z} \end{bmatrix} \\ &+ \begin{bmatrix} K_{1dx} \\ \eta_{dz} + \theta_{dz} \\ \eta_{dy} - \theta_{dy} \end{bmatrix}^{t} \cdot \left(\vec{\Gamma}_{res_{df}} + C_{x} \right) + 2 \cdot K_{2cxx} \cdot \left(\Gamma_{app,dx} + b_{1dx} \right) \cdot \left(\vec{\Gamma}_{res_{df},x} + C_{x} - b_{0cx} \right) \\ &+ K_{2dxx} \cdot \left(\left(\sum_{res_{df},x} + C_{x} - b_{0cx} \right)^{2} + \left(\sum_{app,dx} + b_{1dx} \right)^{2} \right) \begin{bmatrix} \Delta : \text{ off-centering} \\ K_{1} : \text{ scale factor} \\ \eta : \text{ coupling} \\ \theta : \text{ misalignement} \\ K_{2} : \text{ quadratic terms} \end{aligned}$$

Contributors

- Source of errors: mechanical defects, gravity gradient, thermal and magnetic effects
 → 40 groups of contributors
- Each group is specified to be $< 10^{-16}$ m/s⁻²
- 3 groups are explicit in the measurement equation
 - Defects between the instrument and the satellite
 - Defects between the two sensors
 - Quadratic non linearities

Budget before calibration

	Signal element	Parameter concerned	Contribution before calibration (m·s ⁻²)	
Defects between the instrument and the satellite	$K_{1cx} \cdot T_{xx} \cdot \Delta_x$	$K_{1cx} \cdot \Delta_x < 20.2 \ \mu \mathrm{m}$	8.4×10 ⁻¹⁴	
	$K_{1cx} \cdot T_{xz} \cdot \Delta_z$	$K_{1cx} \cdot \Delta_z < 20.2 \ \mu m$	8.6×10 ⁻¹⁴	
	$K_{1cx} \cdot T_{xy} \cdot \Delta_y$	$K_{1cx} \cdot \Delta y < 20.2 \mu\mathrm{m}$	6×10 ⁻¹⁶	
	$(\eta_{cz} + \theta_{cz}) \cdot T_{yy} \cdot \Delta_y$	$\eta_{cz} + \theta_{cz} < 2.6 \times 10^{-3} \text{ rad}$ $\Delta_y < 20 \mu\text{m}$	8.6×10 ⁻¹⁶	
	$(\eta_{cy} - \theta_{cy}) \cdot T_{zz} \cdot \Delta_z$	$\eta_{cy} - \theta_{cy} < 2.6 \times 10^{-3} \text{ rad}$ $\Delta_z < 20 \mu\text{m}$	6.4×10 ⁻¹⁶	
Defects between the two sensors	$2 \cdot K_{1dx} \cdot \Gamma_{res_{df},x}$	K_{1dx} < 10 ⁻²	2×10 ⁻¹⁴	
	$2 \cdot (\eta_{dz} + \theta_{dz}) \cdot \Gamma_{res_{df}, y}$	$\eta_{dz} + \theta_{dz} < 1.6 \times 10^{-3} \text{ rad}$	3.0×10 ⁻¹⁵	
	$2 \cdot (\eta_{dy} - \theta_{dy}) \cdot \Gamma_{res_{df},z}$	$\eta_{dy} - \theta_{dy} < 1.6 \times 10^{-3} \text{ rad}$	3.0×10 ⁻¹⁵	Specification
Quadratic non { linearities	$4 \cdot K_{2,cxx} \cdot \Gamma_{app,dx} \cdot \Gamma_{res_{df},x}$	K_{2cxx} < 20000 s ² /m	8.0×10 ⁻¹⁶	$= 3.10^{-16}$
	$2 \cdot K_{2,dxx} \cdot \left(\Gamma_{res_{df},x}^2 + \Gamma_{app,dx}^2 \right)$	K_{2dxx} < 20000 s ² /m	8.0×10 ⁻¹⁶	A posteriori
	Total = \sum		2×10 ⁻¹³	is required

Calibration methods

$$\Gamma_{mes,dx} = \frac{1}{2} K_{1cx} \cdot \delta \cdot g_{x/sat} + \frac{1}{2} \begin{bmatrix} K_{1cx} \\ \eta_{cz} + \theta_{cz} \\ \eta_{cy} - \theta_{cy} \end{bmatrix}^{t} \cdot [T - In] \cdot \begin{bmatrix} \Delta_{x} \\ \Delta_{y} \\ \Delta_{z} \end{bmatrix} + \begin{bmatrix} K_{1dx} \\ \eta_{dz} + \theta_{dz} \\ \eta_{dy} - \theta_{dy} \end{bmatrix}^{t} \cdot (\vec{\Gamma}_{res_{df}} + \vec{C}) + 2 \cdot K_{2cxx} \cdot (\Gamma_{app,dx} + b_{1dx}) \cdot (\Gamma_{res_{df},x} + C_{x} - b_{0cx}) + K_{2dxx} \cdot ((\Gamma_{res_{df},x} + C_{x} - b_{0cx})^{2} + (\Gamma_{app,dx} + b_{1dx})^{2})$$

Use the important value of
$$T_{xx}$$

and T_{xz} at $2f_{orb}$. For $K_{1cx} \cdot \Delta_x$: $\Gamma_{calib1} = 2 \cdot \Gamma_{mes,dx/cos}(2f_{orb}) = T_{xx}(2f_{orb}) \cdot K_{1cx} \cdot \Delta_x$

 $\begin{array}{l} \mathsf{T}_{xy} \text{ is too weak } \rightarrow \text{ oscillate the} \\ \text{satellite around } \mathsf{Y}_{\mathsf{sat}} \text{:} \quad \Gamma_{calib_1} = 2 \cdot \Gamma_{mes,dx}(f_{cal}) = \alpha_0 \cdot \left[\stackrel{\circ}{T}_{yy}(DC) - \stackrel{\circ}{T}_{xx}(DC) - \omega_{cal}^2 \right] \cdot K_{1cx} \Delta_y \end{array}$

Oscillate the satellite around an axis and oscillate the mass along an other axis \rightarrow Coriolis effect.

Oscillate the satellite along each axis. The measured acceleration is controlled to follow a sine

Evaluated calibration budget

 $T_{cal} = 10$ orbits

Parameter to be calibrated	Perfo. after calibration	Specification	
$K_{1cx} \cdot \Delta_x$	0.10 µm	0.1 µm	
$K_{1cx} \cdot \Delta_z$	0.11 µm	0.1 µm	
$K_{1cx} \cdot \Delta_y$	1.2 µm	2 µm	
$(\eta_{cz} + \theta_{cz})$	1.0×10 ⁻³ rad	9.0×10 ⁻⁴ rad	
$\left(\eta_{cy}- heta_{cy} ight)$	9.5×10 ⁻⁴ rad	9.0×10 ⁻⁴ rad	
(K_{1dx}/K_{1cx})	3.1×10 ⁻⁵	1.5·10 ⁻⁴	
Θ_{dz}	2.3×10 ⁻⁶ rad	5.10 ⁻⁵ rad	
Θ_{dy}	2.3×10 ⁻⁶ rad	5.10 ⁻⁵ rad	
K_{2dxx}/K_{1cx}^2	50.2 s²/m	250 s²/m	
K_{2cxx}/K_{1cx}^2	581.9 s²/m	1000 s²/m	

 \rightarrow Simulator to test the validity of the planned calibration procedures

Structure of the simulator

The instrument

The instrument

Simulation of the applied acceleration				
Input	Output			
Acceleration at the center of the cage	Applied acceleration at the center of mass of mass k			
O_k : center of mass of the proof mass k O_c : center of mass of the cage	Shift between O _k and O _c : → Gravity gradient → Inertia Movement of the mass k: Coriolis			

$$\Gamma_{App,k} = \Gamma_{App}(O_c) + ([T] - [In]) \cdot O_k O_c - [Cor] \cdot O_k O_c$$

Simulation of the applied acceleration

Simulation of the measurement

SCAA and propulsion

SCAA and propulsion

SCAA and propulsion

Satellite and environment

Satellite and environment

Satellite's dynamics					
Input	Output				
Acceleration applied by the propulsion	Satellite's acceleration				
 Data files generated by the OCA, corresponding to the expected trajectory and orientation of the satellite: Non-gravitationnal accelerations solar radiation drag added to the applied acceleration 					

Conclusion

Calibration process definition

- The budget of the measurement equation before calibration does not comply with the objective of the EP test accuracy
- Several in flight calibrations are necessary during the space experiment
- Parameters to be calibrated have been identified and appropriate methods of calibration have been proposed. The calibration accuracy has been analytically evaluated.
- Development of a software simulator including models of the instrument and the satellite drag-free sytem, and simulation of the calibration processes to validate the results.
- Next step
 - Compare the results of the simulator with the analytical results
 - Association with a dedicated software for the EP test sessions, developped at OCA
 - \rightarrow the two simulators will allow to test the entire mission scenario