

Systèmes de Référence Temps-Espace

Testing gravitation in the Solar System with radio-science experiments

A. Hees - Royal Observatory of Belgium and SYRTE Obs. de Paris in collaboration with: P.Wolf, C. Le Poncin-Lafitte (LNE-SYRTE, Paris) B. Lamine, S. Reynaud (LKB, Paris) M.T. Jaekel (LPT-ENS, Paris) V. Lainey (IMCCE, Paris) A. Füzfa (naXys, Namur) V. Dehant (ROB)

Journées scientifiques SF2A - Atelier GRAM * * * * * 21/6/2011

Motivations

- General Relativity (GR) is very well tested in the solar system (light deflection, radio science experiments, ephemerides).
- But... still a lot of interest to perform test of General Relativity:
 - theoretical problem: GR is not the ultimate theory of gravity: quantum theory of gravity, unification with other interactions
 - cosmological problem: no direct detection of Dark Matter and Dark Energy
 ilternative theory of gravity to explain cosmological observations

• search for small deviations of GR (smaller than present constraint) or exploration of new situations

Basic principles of GR

I) Equivalence Principle:

- very well tested (up to 10⁻¹³ with Eötwash experiments and with Lunar Laser Ranging)¹
- more accurate measurement needed: alternative (string) theories predict violation smaller² \rightarrow MICROSCOPE accuracy 10⁻¹⁵

- Gravitation \Leftrightarrow space-time curvature (described by a metric $g_{\mu\nu}$)
- free-falling masses follow geodesics of this metric and ideal clocks measure proper time $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$

¹ C. Will, LRR, 9, 2006

² T. Damour, A.M. Polyakov, Nucl. Phys B, 423/532,1994

Basic principles of GR

II) Field equations (determination of the metric):

- Einstein Equations: $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$

space-time curvature (metric) ⇔ matter-energy content

- In the solar system:
 - sun modeled as a spherical source
 - solution in isotropic coordinates

 $ds^{2} = (1 + 2\phi_{N} + 2\phi_{N}^{2} + \dots)dt^{2} - (1 - 2\phi_{N} + \dots)d\vec{x}^{2}$

with ϕ_N the Newtonian potential

- important effects for space-mission:
 - dynamics ≠ from Newton (ex.: advance of the perihelion)
 - proper time (measured by ideal clocks) \neq coordinate time
 - coordinate time delay for light propagation (Range/Doppler)
 - light deflection (VLBI)

PPN tests of GR

- Post-Newtonian Parametrization of the metric (famous γ and β). $ds^{2} = (1 + 2\phi_{N} + 2\beta\phi_{N}^{2} + \dots)dt^{2} - (1 - 2\gamma\phi_{N} + \dots)d\vec{x}^{2}$
- 30 years of precise experiments have constrained PN parameters very closely around GR

² A. Fienga, Moriond Conference, 2011

PPN tests of GR

- Post-Newtonian Parametrization of the metric (famous γ and β). $ds^2 = (1 + 2\phi_N + 2\beta\phi_N^2 + \dots)dt^2 - (1 - 2\gamma\phi_N + \dots)d\vec{x}^2$
- 30 years of precise experiments have constrained PN parameters very closely around GR

 $\gamma-1=(2.1\pm2.3)\times10^{-5}$ Doppler during a solar conjunction 1 $\beta-1=(-4.1\pm7.8)\times10^{-5}$ $\,$ INPOPI0a ephemerides ^2

 Confirmed by many other experiments:VLBI (light deflection), Lunar Laser Ranging, Mars orbiters, ...

... and expected to be improved in the future (GAIA, BepiColombo around Mercury, ...)

¹ B. Bertotti, L. Iess, P. Tortora, Nature, 425/374, 2003

² A. Fienga, Moriond Conference, 2011

Is it necessary to go beyond ?

- More accurate constraints needed: theoretical models predict smaller PPN deviations: theory attracted towards GR¹ or Chameleon²
- Extend PPN framework: not all theories can enter in the PPN framework !! 2 examples: Post-Einsteinian Gravity and MOND External Field Effect
 - PEG theory³: phenomenology based on a quantum theory of gravity (1-loop correction) by considering a non-local Einstein field equation

$$g_{00} = [g_{00}]_{GR} + 2\delta\Phi_N(r)$$

$$g_{rr} = [g_{rr}]_{GR} + 2\delta\Phi_N(r) - 2\delta\Phi_p(r)$$

- MOND External Field Effect (EFE)⁴: modification of the Newtonian potential due to the external field in which the solar system is embedded $\phi = \frac{GM}{r} + \frac{Q_2}{2} x^i x^j \left(e_i e_j \frac{1}{3}\delta_{ij}\right)$
- What are the effects of these theories on Range/Doppler signals ? Can they be observed ? Simulations performed directly from metric!

¹ T. Damour, K. Nordvedt, Phys. Rev. D, 48/3436, 1993 ² J. Khoury, A. Weltman, Phys. Rev. D, 69/044026, 2004 ³ M.T. Jaekel, S. Reynaud, Class. and Quantum Grav. 22/2135, 2005 ⁴ L. Blanchet, J. Novak, MNRAS, 2011

Idea of the work

- What is the impact of the gravitation theory on the radio-science measurement (for different space missions) ?
- New tool that performs Range/Doppler simulations from a specific space-time metric (GR, PPN or other alternative theories of gravity) and fits of the orbital initial conditions in GR
- Possible to have quick idea of the order of magnitude/signature of the gravitation theory on Range/Doppler signals
 - order of magnitude of relativistic corrections
 - order of magnitude of expected deviations induced by an hypothetical alternative theory
 - correlations of these deviations with the initial conditions
- In this presentation: Cassini (between Jupiter and Saturn) in Post-Einsteinian Gravity¹ (PEG) or with "MOND" External Field Effect ²

Covariant Range/Doppler

 Range is related to propagation time: difference between receptor proper time and emitter proper time

$$R(\tau_r) = \tau_r - \tau_e$$

 Doppler is proper frequency shift between emission and reception

$$D(\tau_e) = \frac{\nu_r}{\nu_e}$$

 These definitions are covariant: do not depend on the coordinates system

- Simulations: orbit of spacecraft/planets, clock behavior, light propagation directly from space-time metric
- Comparison with GR: fit of the initial conditions needed
 - to avoid effects due to the choice of coordinates
 - this fit is always performed in practice

Example I: PPN effects on Cassini

- Cassini Range/Doppler simulations with γ -1=10⁻⁵.
- Modification of the metric $g_{rr} = [g_{rr}]_{GR} 2(\gamma 1)\frac{GM}{rc^2}$
- Fit of the initial conditions of Cassini in GR

Example 2: PEG effects on Cassini

- Alternative theory: PEG in the second sector¹: $g_{rr} = [g_{rr}]_{GR} 2\delta\Phi_p(r)$ with $\delta\Phi_p(r) = \sum \chi_i r^i$
- Cassini Range/Ďoppler simulations with $\chi_1 = 10^{-23} \text{ m}^{-1}$.
- Fit of Cassini initial conditions in GR

¹ M.T. Jaekel, S. Reynaud, Class. and Quantum Grav. 22/2135, 2005 M.T. Jaekel, S. Reynaud, Class. and Quantum Grav. 23/777, 2006

Example: 3 PEG parameters

- Cassini Doppler simulations with χ_1 , χ_2 , $\delta\gamma = \gamma 1$
- Modification of the metric $g_{rr} = [g_{rr}]_{GR} 2\chi_1 r 2\chi_2 r^2 2\delta\gamma \frac{GM}{c^2 r}$
- Maximum of the residuals for different values of PEG parameters
- Comparison with Cassini precision (~ 10^{-14} on Doppler) gives constraints on parameters: $\chi_1 \sim 10^{-23} \text{m}^{-1}$, $\chi_2 \sim 2 \ 10^{-33} \text{m}^{-2}$, γ -1~3 10^{-5} (similar to Bertotti et al¹).

Example: MOND field

The dominant effect (External Field Effect) of MOND around Sun is a quadrupole¹

$$U = \frac{GM}{r} + \frac{Q_2}{2} x^i x^j \left(e_i e_j - \frac{1}{3} \delta_{ij} \right)$$

with 2.1 10⁻²⁷ s⁻² $\leq Q_2 \leq 4.1$ 10⁻²⁶ s⁻² for different MOND function

- Range/Doppler simulations and fit with upper bound on Q₂
- Signals and residuals below Cassini accuracy: Cassini not useful to test MOND theory

- Testing GR in the solar system is very challenging but very important:
 - search for small deviations (smaller than present PPN accuracy)
 - search for deviations in an extended framework
- Software that simulates Range/Doppler observables directly from the space-time metric
- We can answer the question: Can a particular alternative theory of gravity be seen in Range/Doppler measurements of a specific mission? What is the order of magnitude/signature of the signal ?
- As an example: PPN/PEG simulations were presented on Cassini spacecraft → constraint on PEG parameters derived
- Other Ex.: MOND theory signature on Cassini just too small to be detected with this arc.

Numerical simulations were made on the local computing resources (cluster URBM-SysDyn) at the University of Namur (FUNDP)

BACKUP SLIDES

Strategy

I. Simulation of covariant Doppler/Range (alternative theory)

Strategy

I. Simulation of covariant Doppler/Range (alternative theory)

2. Comparison with GR: fit of the initial conditions needed

- to avoid effects due to the choice of coordinates
- this fit is always done in practice

- Comparison with GR: fit of the initial conditions needed
 - to avoid effects due to the choice of coordinates
 - this fit is always done in practice

¹ P. Teyssandier, C. Le-Poncin-Lafitte, Class. and Quantum Grav. 25/145020, 2008

Software accuracy

- Two independent software developed (ROB-SYRTE and LKB): similar methods (except for the fit)
- Check between the two software: ~ 14 digits agreement (pretty good)
- Numerical accuracy of the whole process (simulation + fit): simulation in GR and fit of the initial conditions also in GR. Non-zero residuals are due to numerical errors. Ex. with Cassini:

Example of simulations + fit: PEG

- Alternative theory of gravity: Post-Einsteinian theory of Gravity¹.
 - from a phenomenological point of view: 2 functions are added to GR metric $g_{00} = [g_{00}]_{GR} + 2\delta\Phi_N(r)$ $g_{rr} = [g_{rr}]_{GR} + 2\delta\Phi_N(r) - 2\delta\Phi_p(r)$
 - as an example, let's take a series expansion of $\delta \Phi_N$, $\delta \Phi_P$.

$$\delta \Phi_N(r) = \sum_i \alpha_i r^i$$

$$\delta \Phi_P(r) = \sum_i \chi_i r^i$$

- This extends PPN framework: $\gamma - 1 = \chi_{-1}c^2/GM$

$$\beta - 1 = \alpha_{-2} \left(c^2 / GM \right)^2$$

- Simulations of Cassini spacecraft from 6 june 2002 (between Jupiter and Saturn)
 - Simple model: Sun, Earth, Spacecraft

Perspectives

 perform a lot of simulations with different gravitation theories on different (future and past) space missions

Answer the question: can a particular deviation from GR be seen with a selected space mission ?

- include more effects to predict more subtle correlations: asteroid belt, planetary gravitational field, non-gravitational forces on spacecraft...
- extend the work to the another type of measurement done in the solar system: direction of light ray (VLBI)