Fundamental Physics and

Accurate Astrometry

François Mignard Observatoire de la Côte d'Azur

design: S. Kligner

What is meant by Astrometry ?

Gala <u>
Gala</u>

- Astrometry deals with the measurement of the positions and motions of astronomical objects on the celestial sphere.
 - Global or wide field astrometry
 - Local or small field astrometry
- Astrometry relies on specialized instrumentation and observational and analysis techniques.
- It is fundamental to all other fields of astronomy.

3

SF2A, Nice, 5 June 2012

Fundamental Physics

• Relevant topics

- Very variable according to historical periods
 - dominated by the law of motion, covariance of physical laws under reference frame transformation
- Closely associated to astrometric accuracy •but not only → eg COBE/WMAPS/PLANCK

• Astronomy can provide clues only on large distance scale

- 100 -1000 km
- $-10^{8} 10^{9}$ km
- pc kpc
- Mpc
- Gpc

Earth satellites Solar System Stellar system in the MW Local group QSOs, CMB, SN1a

Astrometry -> Fundamental laws

•	Kepler Laws	1610	Kepler
•	Finite speed of light	1676	Roemer —
•	Gravitation theory - 1/r² law	1700	Newton
•	Aberration of Light	1727	Bradley
•	Universal Gravitation	1827	Savary
•	Orbit of Mercury	1850	LeVerrier
•	Light deflection by the Sun	1919	Eddington
•	Recession of galaxies	1925	Hubble
•	Radar echo delay	1970	加速的时间
•	Superluminuous radiation	1980	
•	Einstein rings and lensing.	1980	
•	Orbital evolution of the binary pulsar	1982	
•	Strong Equivalence Principle (LLR)	1990	
•	Dark matter in Galactic clusters	1990	

Assumptions in Newtonian Gravity

Laws of motion

$$m_a \frac{d^2 \mathbf{x}_a}{dt^2} = -\sum_{b \neq a} Gm_a m_b \frac{\mathbf{x}_a - \mathbf{x}_b}{\left|\mathbf{x}_a - \mathbf{x}_b\right|^3}$$

• ... few subtleties

0

$$m_{a}^{I} \frac{d^{2} x_{a}}{dt^{2}} = -\sum_{b \neq a} G m_{a}^{G} m_{b}^{G} \frac{x_{a} - x_{b}}{|x_{a} - x_{b}|^{2}}$$

- There is an inertial frame
 - F = mg
- There is an absolute time
 - t is absolute and 'flows uniformly'
- Equivalence principle

 $m_a^I = m_a^G$

• G is a fundamental coupling constant

$G \neq G(t)$ $G \neq G(\mathbf{x})$

Astronomy can help check these assumptions in the large scale domain

A dual relationship with mutual benefit

 Astronomy has been the source of early thinking about space and time fundamental properties

 Fundamental physics provides astronomers with tools to model space-time observations

 Accurate astronomy is a playground to put physical theories under tests

SF2A, Nice, 5 June 2012

F. Mignard

Relativity in Astrometry : when and where ?

Effects due to motion

 $v/c = 10^{-4} \sim 20''$ $v^2/c^2 = 10^{-8} \sim 1 \text{ mas}$ $v^3/c^3 = 10^{-12} \sim 0.1 \mu \text{as}$

- Astrometry ~ 1700
- Ground based astrometry < 1980 🔶
- Hipparcos (~ 1mas)
- Gaia, (~ 1-10 µas)

- → 20" = discovery of aberration
 - Newtonian aberration
- \rightarrow v²/c² terms
- → full relativistic formulation

Test of Local Lorentz Invariance ?

Spacetime curvature effects

SF2A, Nice, 5 June 2012

Astrometric modeling

- Newtonian models cannot describe high-accuracy observations:
 - many relativistic effects are several orders of magnitude larger than the observational accuracy
 - space astrometry missions would not work without relativistic modelling
 - •both for space and time \rightarrow 4D modelling
- The simplest theory which successfully describes all available observational data:

GENERAL RELATIVITY

" Astrometry is the measurement of space-time coordinates of photon events "

A. Murray

Implementation for Gaia

BPAC

- The astrometric model is a key element in the DP
 - a modeling accuracy of 0.1 μas is the requirement
- Two independent models have been developed
 - GREM by Klioner et al.
 - RAMOD by Vecchiato, Crosta et al.
- They will be used in different context in the data processing
 - GREM is the baseline for the pipeline reduction
 - it is implemented in the Gaia Tool library
 - it has a direct (\rightarrow proper directions) and a reverse mode
 - both stellar and solar system sources
 - accuracy can be controlled by the user -> CPU-effective
 - partial derivatives are optional
- Comparisons are under way to check respective properties
- Solar system ephemeris (INPOP) are consistent with the model

SF2A, Nice, 5 June 2012

F. Mignard

Relevant timescales for Gaia

- Modelling and data processing in TCB
- on-board clock delivering a realisation of TG (\rightarrow OBT)
- tracking and ground-based timing in UTC

Gala

• Orbit of Gaia around L2

$$\frac{d\tau}{dt} \approx 1 - \frac{1}{c^2} \left[\frac{V^2}{2} + U \right] + \frac{1}{c^4} \left[-\frac{V^4}{8} - \frac{3}{2}V^2U + \frac{U^2}{2} + 4\mathbf{V.W} \right]$$

$$t - \tau = \int \left(\frac{V^2}{2c^2} + \frac{U}{c^2}\right) dt + \int \left(\frac{1}{8}\frac{V^4}{c^4} + \frac{3}{2}\frac{V^2U}{c^4} - \frac{U^2}{2c^4} - 4\mathbf{V}.\mathbf{W}\right) dt$$

Numerical quadrature + solar system ephemerides

<u>Secular term</u>

	TCG	Gaia	
L _c	1.480 826 867×10 ⁻⁸	1.481 259 949×10 ⁻⁸	day/day
		1.481 259 960×10 ⁻⁸ wi	th 1/c⁴ terms

Periodic terms

	Т <i>СG</i>	Gaia	
P(yr)	μs	μs	
1.00	1656.68	1664.74	Sun
0.486		121.74	Lissajous
1.09	22.42	22.63	J-S
0.5	13.84	13.83	25
11.8	4.77	4.76	J
1.04	4.68	4.63	Sa-S
29.5	2.26	2.28	Sa
0.95		1.33	Lis- S

SF2A, Nice, 5 June 2012

F. Mignard

Relativity tests with astrometry

Gaia ambitions for testing relativity

Solar Light deflection

$$\sigma_{\gamma} < 1 \times 10^{-6}$$

Orbits of minor planets

$$\sigma_{\beta} < 5 \times 10^{-4}$$

Orbits of minor planets

$$\sigma_{\dot{G}/G} < 5 \times 10^{-13} \, \mathrm{yr}^{-1}$$

Jupiter light deflection

$$Q_{\rm deflect} > 3\sigma$$

Relativity tests with accurate astrometry

Gaia : Core tests - good results expected

Gaia: complementary tests with parameter fitting

Gaia: tests on residuals

- Most precise test on γ with Gaia
 - Preliminary analysis (ESA, 2000, Mignard, 2001, Vecchiato et al., 2003)
- Advantages of Gaia experiment
 - Optical with accurate astrometry
 - One individual observation at 90° from the Sun $\rightarrow \gamma$ to 0.02 accuracy
 - Deflection (not time delay involving nearly sun grazing)
 - Wide range of angular coverage \rightarrow mapping of the deflection
 - Test of alternate deflection law
 - No problem with solar corona
 - Full-scale simulation of the experiments
 - sensitivity analysis, systematic effects
 - Testing could be wider than PPN formulation

Gaia single observation accuracy

- One transit over the field-of-view
- Integration over 9 Astro CCDs

Solar deflection→ 4mas @ 90°

Photon path in a gravitational field

$$g_{00} = -1 + \frac{2}{c^2} w(x,t) - \frac{2}{c^4} \beta w^2(x,t)$$

$$g_{0i} = -\frac{4}{c^3} w^i(x,t)$$

$$g_{ij} = \left(1 + \frac{2}{c^2} \gamma w(x,t)\right) \delta_{ij}$$

$$\mathbf{x}(t) = \mathbf{x}_0(t) + \mathbf{\sigma}(t - t_0) + \Delta \mathbf{x}(t) / c$$

$$\mathbf{u} = \mathbf{u}_0 + \frac{(1 + \gamma) GM}{c^2} \frac{[1 + (\mathbf{u}_0 \cdot \mathbf{r}) / r] \mathbf{t}}{b^2}$$

$$\delta \phi = \frac{(1 + \gamma) GM}{c^2} \frac{1 + \cos \chi}{b}$$

C

M

r

 \mathbf{u}_{0}

b

2

Relativity Experiments

- 2 x 10⁷ stars V < 14
- 80 observations per star
- measurable effect even at 135° from the Sun
- but large correlation with zero-point parallax (~ -0.85)

r

χ

Expected Performance on γ

<u>Hipparcos</u>

- 10⁵ stars V < 10
- 2.5 x 10⁶ abscissas
- σ ~ 3 to 8 mas
- χ > 47 degrees

 $\gamma = 1 \pm 3 \times 10^{-3}$

σ _H /σ _G

- 8 × 10⁶ stars V < 13
- 6×10^8 FOV transits $\rightarrow \times 15$
- σ ~ 40 μas → x 125
- χ > 45 degrees

<u>GAIA</u>

• + 10⁹ fainter stars

 $\sigma_{\gamma} \approx 2 \times 10^{-6}$ to 6×10^{-7}

Special problems related to the procedure

- many measurements are used and averaged out to get gamma
 - improvement in 1/n^{1/2} if no other unknown instrumental or physical effect is correlated with the deflection
 - very hard to establish at this level of accuracy
- but these effects become significant only if constant over five years
- Known effects already identified
 - global parallax shift strongly correlated with γ
 - •itself linked to instrument thermo-mechanical behaviour
 - relation with the velocity and aberration correction

Link with parallax

Deflection : $\delta \theta_1$

$$\delta\theta_1 = \frac{2GM}{ac^2} \frac{1+\gamma}{2} \frac{\sin\chi}{1-\cos\chi}$$

Parallax : $\delta \theta_2$ $\delta \theta_2 = \pi \sin \chi$

Abscissa change: $\delta\phi_1 = \delta\theta_1 \cos\psi = \frac{2GM}{ac^2} \frac{1+\gamma}{2} \frac{\cos\varepsilon\sin\phi}{1-\cos\varepsilon\cos\phi}$

$$\delta\phi_2 = -\delta\theta_2 \cos\psi = -\pi \cos\varepsilon \sin\phi$$

Correlation: 0.88 (0.92 with Hipparcos)

Beyond plain γ

- Observations over five years
 - processing over independent time intervals
 - check for systematic effects
- Repeated observations over many stars
 - Stability check: dependence of γ on various parameters

brightness, color, geometry

- Sampling of the angular distance to the Sun
 - mapping of the actual angular dependence

blind decomposition on spherical harmonics

Higher order PPN terms could be included

Light deflection by giant planets

		Monopole	Quadrupole
		mas	μας
	1R _j	16	240
-	2R _j	8	30
- Comment	5R _j	3	2
	$10R_j$	2	0.2
	1R.	6	95
	2R _s	3	12
Ø	5R _s	1	0.8
	10R _s	0.6	0.01

Gaia Relativity Experiments

- Jupiter light deflection
 - Small field astrometry with Gaia
 - Relative measurements of star position around Jupiter
 - Same field observed earlier or later

Deflection from Jupiter quadrupole

Jupiter in 2013

$$\delta\phi_Q = \frac{4GM_J}{c^2} \frac{J_2 R_J^2}{b^3}$$

On-going work

- optimize the mission parameters
- search for observations close to bright stars
- method of reduction

Crosta & Mignard, 2006, CQG

Simplified formula for the quadrupole deflection

$$\delta\phi_M = \frac{4GM_J}{c^2 b} \frac{1+\gamma}{2}$$
$$\delta\phi_Q = \frac{4GM_J}{c^2} \frac{J_2 R_J^2}{b^3}$$

Exact expression with radial and non radial deflection

Full derivation includes radial and non-radial deflection

- Klioner, 2003 ; Crosta & Mignard, 2006 ; Leponcin-Lafitte & Teysandier.

Equations of Motion for a test body

• EIH equations with $M_s \gg M_p$, $V_s \ll V_p$

- Heliocentric form
- good for gravitation on asteroids and comets

Determination of β : Orbits of minor planets

- About 300,000 planets observable with Gaia
- Accurate astrometry corrected for phase effect
- ~ 60 observations each over 5 years
- Accurate orbits determined with Gaia data
- Perihelion precession included in the dynamical model

$$\Delta \varpi = \frac{6\pi\lambda \, GM}{a(1-e^2)c^2} + \frac{3\pi \, J_2 R^2}{a^2(1-e^2)^2}$$

$$\lambda = (2\gamma - \beta + 2)/3$$

$$\dot{\omega} = \frac{38\lambda}{a^{5/2}(1-e^2)} + \frac{0.04(J_2/10^{-6})}{a^{7/2}(1-e^2)^2}$$

mas/yr (a in AU)

Perihelion precession : edm/dt

- Parameters fitted with Gaia
 - PPN β , Solar J2, G/G
- Expected precision $\sigma(\beta) \sim 2 \times 10^{-4}$

SF2A, Nice, 5 June 2012

F. Mignard

- Gaia launch is scheduled for September 2013
 - Observing mission to start 3 months after
 - Continuous scanning of the sky for 5 yrs
- Some intermediate releases to begin L + 2yrs
- Early results on γ at mid-mission
- Accurate reference frame at mission completion

SF2A, Nice, 5 June 2012

F. Mignard

Accurate time metrology for Gaia

- Time stamping accuracy is high for Gaia
 - The requirements in the timing of on-board event to 1 μs
 - Clock stability over ~ 1 day of 10⁻¹²
 - daily link with ground stations over ~8 h
 - One Rb clock on-board
- Objective: link between on-board time and astronomical time to 0.1 μ s
 - Clock model and clock monitoring
 - relationship between OBT (clock delivered time) and TG (Gaia proper time)
 - Relativistic modeling of the time metrology chain
 - events timed in UTC, TT, TCG, TCB, TG
 - Details depends on Gaia position and velocity
- Synchronization sessions every day during visibility period
 - Synchronisation event triggered on-board every ~ s
 - real time downlink in current TM frame

Overall synchronisation scheme

• Orbit of Gaia around L2

$$\frac{d\tau}{dt} \approx 1 - \frac{1}{c^2} \left[\frac{V^2}{2} + U \right] + \frac{1}{c^4} \left[-\frac{V^4}{8} - \frac{3}{2}V^2U + \frac{U^2}{2} + 4\mathbf{V.W} \right]$$

$$t - \tau = \int \left(\frac{V^2}{2c^2} + \frac{U}{c^2}\right) dt + \int \left(\frac{1}{8}\frac{V^4}{c^4} + \frac{3}{2}\frac{V^2U}{c^4} - \frac{U^2}{2c^4} - 4\mathbf{V}.\mathbf{W}\right) dt$$

Numerical quadrature + solar system ephemerides

Raw difference TCB - TG Makes sense over a long term

Mignard et al., 2006

Gala

F. Mignard

Reference frame with GAIA

- Different from Hipparcos :
 - no link, primary frame determined
- Observe extragalactic sources in the visible
- There are plenty brighter than V = 20
 - about 500,000 observable with Gaia
 - 20,000 V < 18
- Look for the anomalous proper motions to clean the sample
- The remaining set will display an overall spin
- Find ω and apply $-\omega$ everywhere
- The results will be referred to the best non-rotating frame
 - paradigm of the ICRS

47

Definition sources (212) • Candidate sources (294) • Other sources (102)

Based on the simulation used in the DPAC Universe model

• G < 18 • 18< G < 19 • 19< G < 20

Slezak & Mignard, 2007

- So far no systematic transverse motion detected
 - QSOs have fixed comoving coordinates
- If $V_t \sim H_0 D$ ===> $\mu \sim 10 \mu as/yr$
 - VLBI in 20 yrs with $s_{pos} \sim 1 \text{ mas} === \mu < 50 \mu \text{as}$
 - but sub-mas structure instabilities
- Other sources :
 - microlensing P = 10^{-6} (Belokurov) \rightarrow only a handful
 - matter ejection, superluminous motion
 - Macrolensing $P = 10^{-2}$ (Mignard, 2003)
 - Variable galactic aberration (Kovalevsky, 2003)
 - Accelerated motion in the local group ?
- GAIA has the opportunity to test the ICRS paradigm
- QSO survey will be the largest available

More on QSOs and reference frame

- **BPAC**
- The solar system is in motion in the Galaxy, V ~ 220 km s^{-1}
 - constant aberration of ~ 250" for the QSO wrt to comoving frame
 - not detectable (principle of relativity)
 - δ**u** = **v**/c

But the solar motion is not uniform

- ~ circular motion of radius $R \sim 8.5$ kpc and period 250×10^6 yrs
- the aberration is then variable

$$\delta\mu = \frac{d(\delta\mathbf{u})}{dt} = \frac{\Gamma}{c} = \frac{V^2}{cR} \approx 4\mu as / yr$$

• For any acceleration Γ of the SS wrt Quasars :

Observations

$$\frac{d\mathbf{u}}{dt} = \frac{\Gamma}{c} - (\frac{\Gamma}{c} \cdot \mathbf{u})\mathbf{u}$$

$$\mathbf{u}$$

$$\mu_{\alpha} \cos \delta = -\frac{\Gamma_{x}}{c} \sin \alpha + \frac{\Gamma_{y}}{c} \cos \alpha$$

$$= \frac{\Gamma_{x}}{c} \sin \delta \cos \alpha + \frac{\Gamma_{y}}{c} \sin \delta \sin \alpha - \frac{\Gamma_{z}}{c} \cos \delta$$

- Equations similar to global rotation.
- Precision of ~ 0.4 μ as/an (2 prad/yr) on Γ/c

= 0.2×10^{-10} m s⁻² (γ Pionner/40)

- Galactic rotation (µ ~ 4 µas/yr)
- Acceleration of the Local Group -> CDM ?

Residual rotation of the Gaia frame today radio

- ICRF directly in the visible
- Between 20,000 et 50,000 primary sources 212 •
- Inertiality < 0.3 muas/yr

50 muas/yr

Standard astrometric model: stars (from S. Klioner)

- s : observed direction by an observer at r and at t_r
- **m** : direction of the incoming photon as seen by the observer $\mathbf{m} = -\mathbf{s}$
- **n** : same as **m** relative to the BCRS at **r**
- σ : initial direction of the light path at t = ∞
- **k** : allowing for the finite distance of the source
- 1 : Direction of the source from the origin of the BCRS at t_r parallax

 I_0 : Same at some reference time $t_0 \sim t_r$

aberration *light-deflection*

proper motion

→ position

→ velocity

→ position

Solar light deflection with Gaia: order of magnitude

- Gaia will observe between 45° to 135° from the Sun
 - very large excursion
 - for all angles light deflection is very large compared to single observation accuracy
- One astrometric observation at 90° from the Sun gives:
 - deflection of 4 mas
 - astrometric measurement to 30 μ as with Gaia on bright stars
 - 10^7 stars brighter than V = 13
 - potentially one single measurement tells something on γ to 0.01
 - Gaia will collect 10⁸ 10⁹ such measurements
- Gaia is potentially sensitive to γ -1 deviations as small as 10⁻⁶

Optimisation of the scanning law

- There are two free parameters
 - Initial precession and spin phases
- Initially several conflicting mission constraints
 - but today Jupiter experiment has the lead
- Search for the conditions that yield observations of Jupiter with bright stars at very small distance
 - Full simulation of Jupiter transits
 - performance assessment cumulated over the transits
- Implementation
 - A standalone S/W will be used immediately after launch
 - Gaia orbit will be known for the whole mission
 - Optimal Scanning parameters will be selected

Performances on ε (quadrupole)

Performances on y with Jupiter

Planetary light deflection

Observations from Earth vicinity

Body	Monopole	χ	Quadrupole	χ
	mas	δθ = 1 μαs	μας	δθ = 1 μαs
Sun	17,000	180°		
Mercury	0.083	0.15°		
Venus	0.49	4.5°		
Mars	0.12	0.4°		
Jupiter	16.3	90°	240	8 R _J
Saturn	5.8	17°	95	4 R _s
Uranus	2.1	1.2°	8	$2 R_{U}$
Neptune	2.5	0.9°	10	2 R _N

- Main experiment to be conducted with the Sun
- But observations will also take place close to the planets
 - Jupiter and Saturn to provide large signatures
 - deflection not correlated with parallax
 - independent measurements with each planet
- Much smaller number of observations
 - 70 observations with Jupiter in the FOV
 - 1.6 mas deflection at 10 Jupiter radii
 - only 100 to 1000 stars involved at each visibility period
 - 1/n^{1/2} statistics will not crash into systematic effect limit

Jupiter Experiment

- Goal : detection of the light deflection by Jupiter
 - Monopole for a grazing ray \sim 16 mas falls off as 1/r
 - Quadrupole for a grazing ray ~ 250 $\mu \rm as$ falls off as $1/r^3$
- This is the only experiment planned with Gaia
 - i.e. some orbital or scanning parameters can be optimised
 - signal strength depends on very few favourable observations
 - Gaia orbit won't be known before few weeks days launch
- Principles and performances presented independently by
 - Crosta & Mignard (2006), Anglada & Klioner (2006)
- On-going activity and questions:
 - optimisation of the scanning law to increase the signal
 - how close can we observe from Jupiter?
 - reduction principles (two methods investigated)

Perihelion precession : dm/dt

- 20,000 minor planets in the plot
 - includes the largest NEOs
- * Range of *a* and *e*

Astrometry & Relativity

Relativity relevance with Gaia

- modeling
- testing
- accurate time metrology
- frame building

