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PODET and PODET-DEB projects

Diffusion 
Serveur - Interopérabilité 

Séries	  temporelles	  court	  terme	  :	  
-‐ Eléments	  osculateurs	  restitués	  
-‐ Éléments	  osculateurs	  propagés	  

-‐ 	  EMO	  approchés	  

Ephémérides – Evénements – 
Risques – data - graphes 

Données	  radar	  
(GRAVES	  etc…)	  

	  
Images	  d’archives	  (BD	  IMCCE)	  

	   	  
Images	  en	  temps	  réel	  	  

(réseaux	  de	  télescopes	  	  dont	  
robotiques)	  	  

	  

Réduction astrométrique 

Séries	  temporelles	  de	  radec,	  obtenues	  avec	  un	  ou	  
plusieurs	  instruments	  	  

Ajustement d’arcs d’orbite à court terme 
Filtrage / Propagation 

Applications :  
- dynamique long terme 
-  durée de vie 
- mise à jour catalogue EMO 

Obtention	  d’EMO	  précis	  :	  	  
mise	  à	  jour	  du	  catalogue	  

Ajustement d’arcs d’orbite à long terme 

Série	  temporelle	  
d’EMO	  précis	  D
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Applications :  
- identification/détection 
-  rencontres proches 
- orbitographie « opérationnelle » 
- comparaisons EMO/TLE 
- dates de rentrée 
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Overview and aim of the study

Main goal: Fitting an orbit on tracking data

range: ≡ SLR data
R.A., Decl.: ≡ after astrometric reduction of images

Usual methods and their main drawbacks

LS methods: ”good enough” a priori values required
not valid for uncatalogued objects !
”Gauss, Laplace, Escobal...”:

not valid in any geometrical configuration (singularities)
poor dynamical modelling (keplerian motion...)
very poor results for some cases, not helpful as a priori

New approach based on a genetic algorithm

supposed to be valid in all dynamical configurations
can be used for TSA, or over a couple of days
without any a priori knowledge of the trajectory
2 preliminary results shown: 1 SLR satellite, 1 GEO
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Orbital modelling and fit

Equations of motion:

d2r

dt2
= F(r, ṙ, t, σ)

r(t0) = r0 ṙ(t0) = ṙ0

Estimation of initial conditions

Dedicated classical algorithm
Corrections to a ”good-enough” a priori
Test of all possible configurations within a frame of dimension
6 (!)
Using of an algorithm selecting ”good” initial conditions, and
iterating
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Laplace method

T
[ ]

T : (x, y, z, ẋ, ẏ, ż) → (a, e, i,Ω,ω,λ0)

−−→
L(t)

t −→
R t d−→r

−−→
L(t)

−−→
R(t)

t
α δ −−→

L(t)L(t) ≡

 cos δ cosα
cos δ sinα

sin δ



R(t) ≡ −R0

 cosφ cos θ
cosφ sin θ

sin θ


r = dL− R

Unknowns: r, ṙ (and d , distance station-satellite)

3 observations: L(t1),L(t2),L(t3)

Taylor expansion

L(ti ) ' L(t0) + (ti − t0)L̇(t0) +
1

2
(ti − t0)2L̈(t0)

with t0 = 1
3

(t1 + t2 + t3): L(t0), L̇(t0), L̈(t0) known

at t0: r̈ = d̈L + d L̈ + 2ḋ L̇− R̈ where r̈ = −µ r

r 3

Shape of the solution for d : d =
A

r 3
+ B

Shape of the solution for ḋ : ḋ = µ
A2

r 3
+

B2

r 3

after algebraic steps:

r obtained from r2 = d2 + R2 − 2L.R
Polynom of deg. 8 and then r(t0), ṙ(t0)
but some singularities exist
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Improvement of the Laplace method

~̈r = µ

(
−1 +

3

2
J2

(
R⊕

r

)2

(3 sin2 φ− 1)

)
~r

r 3
(Laas-Bourez, et al., 2012)
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Multi-Objective Genetic Algorithms (MOGA)
How do genetic algorithms work ?

Find the set of initial conditions (keplerian elements) that minimizes
criteria at hand. These criteria are defined as functions of the initial
conditions.

evaluation for a set of vectors of possible initial conditions (implicit
parallelism).

Between two successive iterations, some vectors are replaced by others
and the best are archived. The evolution of the set of initial conditions is
governed by mutations (random small changes in vectors of possible
initial conditions) and crossover (mix two vectors of possible initial
conditions).

At the end of the iteration procedure, a set of solutions is supplied.

MOGA used here: ε-MOEA [Deb et al., 2003] Deb, K., M. Mohan, S. Mishra (2003)
A Fast Multi-objective Evolutionary Algorithm for Finding Well-Spread Pareto-Optimal Solutions. KanGAL
Report Number 2003002.
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Orbital modeling

An analytical approach

Huge number of different cases to be tested: very quick
computations (required)
Main perturbations accounted for (required), at least J2

Valid for all dynamical configurations: written in a set of
equinoctial elements

E ≡ (a,Ω+ω+M, e cos(Ω+ω), e sin(Ω+ω), sin
i

2
cos Ω, sin

i

2
sin Ω)

Shape of the solution

E(t) = Ē(t) + L(Ē)
∂W

∂Ē
(Ē(t))

Initial conditions

Mean initial condition: Ē(t0) (6 elements adjusted)
Osculating initial condition: E(t0) = Ē(t0) + L(Ē)∂W

∂Ē
(Ē(t0))
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Analytical approach

mean elements Ē: long periodic and secular effects

induced mainly by zonal coefficients on the angles
main effect: J2

∆Ω̇ = −
3

2

(
Re

a

)2

nJ2
cos i

(1 − e2)2
∆ω̇ = −

3

4

(
Re

a

)2

nJ2
1 − 5(cos i)2

(1 − e2)2

∆Ṁ = −
3

4

(
Re

a

)2

nJ2
1 − 3(cos i)2

(1 − e2)3/2

short periodic part described through the so-called ”generator” W :

W2 = −µJ2
1

n̄a

(
R0

a

)2 1

η3

((
1

2
−

3

4
sin2 i

)
(v − u + e sin u + e sin v)

+ 4 cos2 i

2
sin

i

2
cos(ω + v) sin

i

2
sin(ω + v)e cos v

+ 3 cos2 i

2
sin

i

2
cos(ω + v) sin

i

2
sin(ω + v)

− cos2 i

2

((
sin

i

2
cos(ω + v)

)2 −
(

sin
i

2
sin(ω + v)

)2
)
e sin v

)

Example: a(t) = ā +
3

2
J2

Re

ā
sin2 ī cos 2(ω̄ + M̄)
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An iteration of the MOGA

The MOGA provides a vector of
initial conditions.

Initial conditions used to compute
an analytical orbit.

Analytical orbit used to compute

predicted measurements.

range
RADEC
...

Predicted measurements

compared to the true data

Norm of the differences
used as a criterion to
minimize.
LS cost function

Iterations
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Preliminary step: Parameterization of the MOGA

GA

Initialization: population of 400 chromosomes
sma a ∈ [12200 15600] km for Lageos,
a ∈ [40000 45000] km for Telecom-2D
eccentricity ∈ [0 0.1] (to save CPU time)
inclination ∈ [0 180◦[
angles Ω, ω M ∈ [0 360◦[

Mutation. p = 0.9
Crossover. p = 0.16667 = 1/6
Stop condition: end after 500 000 iterations (total CPU: 30h)

Boundaring the intervals in a realistic way

Example: Choice of an a priori s.m.a. (based on the observed
period)
1. Circular orbit hypothesis

2. and then possible changes to evaluate r instead of a during a pass (large eccentricities

accounted for)

Use of admissible regions
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Test case1: orbit determination of the Lageos SLR sat.

Very precise orbit from the ILRS network available at the level of ≈ 1cm

This case:

Eight days of SLR data (MJD 56 024 56 031 included, April
2012)
29 tracking stations (2 034 measurements).

Particularities of the test

Search not only for the best vector of initial conditions,
Additionally search for an optimal sub-network of SLR stations
Two objectives are considered:

the RMS of differences between predicted measurements and
the real data (to be minimized)
the number of SLR stations involved in the computation (to
be maximized).
Without it, the MOGA would probably tend to use a minimal
set of stations to get better results regarding the initial
conditions.
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Test case1: results
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Reference orbit (gins s/w):
RMS of differences is 2.15cm

Adjusted orbit
a0 = 12274.840 (12270.009) km: ∆a = 4.831km
e0 = 0.004408 (0.004261): ∆e = 0.000147
I0 = 109.839(109.801)◦: ∆I = 0.038◦

Ω0 = 203.306 (203.323)◦:∆Ω = 0.017◦

ω0 + M0 = 76.538 (76.616)◦: ∆(ω + M) = 0.078◦

Interpretations

Analytical model suitable for the
dynamics
G.A. have a good capability over the
global scale. For better results:

Change of the GA parameters
LS adjustment
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Test case1: validation of the dynamical model

Reference orbit (gins s/w):
RMS of differences is 2.15cm

Adjusted orbit
a0 = 12274.840 (12270.009) km: ∆a = 4.831km
e0 = 0.004408 (0.004261): ∆e = 0.000147
I0 = 109.839(109.801)◦: ∆I = 0.038◦

Ω0 = 203.306 (203.323)◦:∆Ω = 0.017◦

ω0 + M0 = 76.538 (76.616)◦: ∆(ω + M) = 0.078◦

Sensitivity analysis

adiff min
0 = 12273.440 km

(cf Figure: a (x-axis, m), rms (y-axis, m))

Idiff min
0 = 110.639◦

Ωdiff min
0 = 201.261◦
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Test case2: Telecom2D

The TAROT network

Calern (Grasse,F) ; la Silla (Chile)

large FOV (1.86◦ × 1.86◦)

aperture: 250 mm

automatic

Upper magnitude: 15 (GEO)

Measur. accuracy: 700 m (GEO)
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Test case2: Telecom2D, the data

Data set:

nine days of angular data (MJD 56 147 56 156 included, Apr.
2012) from the two TAROT-telescopes
86 measurements (27 for Chile and 59 for France).

The MOGA searches for the best vector of initial conditions

Two objectives are considered (both to be minimized), the RMS of

differences between predicted measurements and the real data for:

elevation
azimut
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Test case2, Telecom2D: results
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Reference orbit (Romance s/w)

The final archive provided by the MOGA. For

the best solution regarding both RMS of

differences, the RMS values of differences are:
0.0485◦ for elevation
0.0742◦ for azimut

Sensitivity analysis: Same concl. as for LAG1

Adjusted orbit (orbital elements):
a0 = 42171.560 (42165.980) km: ∆a = 5.580km
e0 = 0.0000923 (0.0001906): ∆e = 0.0000983
I0 = 5.578(5.583)◦: ∆I = 0.005◦

Ω0 = 62.897 (61.480)◦:∆Ω = 1.417◦

ω0 + M0 = 257.180 (256.934)◦: ∆(ω + M) = 0.246◦

Interpretations

Analytical model suitable
but to be improved
(zonal+tesseral parameters)

17/19



Journées de la SF2A - Montpellier, June 2013, Florent.Deleflie@imcce.fr

Next step: admissible regions

292 G. Tommei et al.

Fig. 1 The space debris D
is observed by the point O
on the surface of the Earth.
The geocenter is denoted
by G G

P

D

PD =

O
PO

ρ R
^

Definition 1 An optical attributable is a vector

Aopt = (α, δ, α̇, δ̇) ∈ [−π , π) × (−π/2, π/2) × R2 , (3)

observed at a time t.

As reference system for the polar coordinates we normally use an equatorial one
(e.g., J2000), that is α is the right ascension and δ the declination; note that it is possible
to change the reference system without modifying the equations in the paper.

Since the range ρ and the range rate ρ̇ are left undetermined by the attributable,
following Milani et al. (2004) we shall derive conditions on (ρ, ρ̇) under the hypothesis
that the object D is a satellite of the Earth. The quantities used are the following:

• Geocentric two-body energy per unit mass of the object

EE(ρ, ρ̇) = 1
2
‖Ṗ‖2 − µE

‖P‖ , (4)

where µE = G mE and mE is the Earth mass.
• Lower bound for the space debris distance from the position of the observer

on the Earth
ρMIN = 2 rE % 12756 km,

where rE is the value of the Earth radius. We use this bound because we are inter-
ested in space debris in high orbits; the objects in lower orbits are usually observed
by radar and the admissible region changes (see Sect. 3).

• Upper bound for the space debris distance from the position of the observer on
the Earth

ρMAX = 20 rE % 127560 km.

Note that we have set the values of ρMIN and ρMAX “a priori” and that we could vary
them during the analysis of real data. The current choice of ρMIN is driven by the
fact that the region between ≈2,000 km and ρMIN shows an extremely low density of
objects and is therefore not of interest for any observation campaign. Now let us write
the conditions on (ρ, ρ̇) explicitly:

(A) C1 = {(ρ, ρ̇) : EE < 0}(D is a satellite of the Earth) ;
(B) C2 = {(ρ, ρ̇) : ρMIN < ρ < ρMAX}

(
the distance of the object

by the observer is in the interval (ρMIN, ρMAX)
)

.

Another condition should be taken into account, that is, that D belongs to the Solar
System (the heliocentric energy ES of the object should be negative). However, Milani
et al. (2004) have proved that if the object is controlled by the Earth (r ≤ rSI , where r

(Tommei et al., 2007)
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= 0

.

ε
E

MAXMIN ρ

ρ

ρρ

Fig. 4 Admissible region for a space debris D taking into account the condition (A′) instead of (A)

the minimum range corresponding to the second connected component of the curve
EE = 0, while at the bottom it is greater.

In order to exclude orbits of “just-launched” objects, we should add a third condi-
tion on the pericenter q = a (1−e) (a is the semimajor axis and e the eccentricity), that
is q > rE + h, where h could be the height of the atmosphere. But to compute analyt-
ically the corresponding curve in the (ρ, ρ̇) plane is extremely complicated. However,
we have thought that it is possible to make a restriction on the semimajor axis that
corresponds to fixing a lower bound for the energy, by replacing condition (A) with

(A′) C1 = {(ρ, ρ̇) : Emin
E < EE < 0} (D is a satellite of the Earth

and its semimajor axis is greater than a fixed quantity).

Figure 4 shows the resulting admissible region (for simplicity we show only the case
with one connected component).

2.1 Sampling of the admissible region with triangulation

Given a very short arc of observations and the corresponding optical attributable,
Aopt = (α, δ, α̇, δ̇), at some epoch (for example the mean observation time), a least
square solution for the orbital elements, with its normal and covariance matrix, (see
Milani et al. (2005a) for more details on orbit determination), is in general not
computable.

If we assume that the object is a satellite of the Earth we can limit the uncertainty
to the appropriate admissible region in the (ρ, ρ̇) plane. The admissible region is a
compact subset of the plane in which it is defined: however, this is still an infinite set,

Example of admissible region from optical data
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α
.

.

ε E = 0

δ

Fig. 6 Admissible region for a space debris D from radar data when condition (11) is satisfied and
taking into account the observation: EE = 0 is the curve of zero geocentric energy and it is an ellipse

level curve, to select some points, corresponding to some fixed directions starting from
the center of the ellipse. The points obtained are used as VD in a process of orbit
determination. If we need to give a geometrical structure to these points we can trian-
gulate the admissible region starting from the cobweb. This is possible simply working
in the space of polar elliptic coordinates where the cobweb is a rectangular grid: we
halve the cells composed by four nodes with a diagonal obtaining two triangles. Then
joining the origin of the grid with the nodes of the first vertical line the triangulation
is completed.

4 Linkage and identification

When a debris object is observed for a short arc the information contained in such a
dataset are not enough to compute a full orbit, that is, a set of six orbital parameters.
In such a case, the orbit determination must begin with the linkage of two TSAs
(identification of two TSAs belonging to the same object). If we find an orbit it will be
of very poor accuracy, so we have to look for another TSA to attribute to the previous
orbit. We shall explain a procedure of orbit determination just tested on asteroids
(Milani et al. 2005b) and we shall show how to apply it to debris objects. The proce-
dure starts with a TSA, which can be composed by optical observations or by radar
observations. First of all, the attributables (optical or radar) are computed by fitting
the observations of the available short arcs. Let us suppose to have two attributables
belonging to the same object: the steps leading to the orbit determination could be
the following.

Example of admissible region from
radar/range data

18/19



Journées de la SF2A - Montpellier, June 2013, Florent.Deleflie@imcce.fr

Conclusions and prospects

Already done

Combination of G.A. and a modelling of the orbital motion
Different kinds of data (that can be combined)
Goal reached: determining from scratch the order of the initial
values of an orbital arc

G.A. refinements

Optimization on the choice of parameters
Implementing a better stop condition (to reduce CPU time)

Analytical modelling enhancements

Tesseral parameters
Atmospheric drag for longer arcs ?
... but impact on the total CPU time

Multiplying the tests

Really testing the capabilities for TSA...
.. and in downgraded conditions (data sparse in time)
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