Orbit determination methods in view of the PODET project

Florent Deleflie ${ }^{1}$, David Coulot ${ }^{2}$, Romain Decosta ${ }^{1}$, Basile van Cooten ${ }^{3}$, Alain Vienne ${ }^{1}$, Pascal Richard ${ }^{4}$
${ }^{1}$ Institut de Mécanique Céleste et de Calcul des Ephémérides, Paris et Université Lille 1
${ }^{2}$ IGN/LAREG, Université Paris Diderot, Paris
${ }^{3}$ ENPC Champs sur Marne
${ }^{4}$ Centre National d'Etudes Spatiales, Toulouse
7th June 2013

PODET and PODET-DEB projects

Overview and aim of the study

- Main goal: Fitting an orbit on tracking data
- range: \equiv SLR data

■ R.A., Decl.: \equiv after astrometric reduction of images

- Usual methods and their main drawbacks

■ LS methods: "good enough" a priori values required
■ not valid for uncatalogued objects !
■ "Gauss, Laplace, Escobal...":
■ not valid in any geometrical configuration (singularities)

- poor dynamical modelling (keplerian motion...)

■ very poor results for some cases, not helpful as a priori
■ New approach based on a genetic algorithm
■ supposed to be valid in all dynamical configurations
■ can be used for TSA, or over a couple of days

- without any a priori knowledge of the trajectory

■ 2 preliminary results shown: 1 SLR satellite, 1 GEO

Orbital modelling and fit

- Equations of motion:

$$
\begin{aligned}
\frac{d^{2} \mathbf{r}}{d t^{2}}= & \mathbf{F}(\mathbf{r}, \dot{\mathbf{r}}, t, \sigma) \\
\mathbf{r}\left(t_{0}\right)=\mathbf{r}_{0} & \dot{\mathbf{r}}\left(t_{0}\right)=\dot{\mathbf{r}}_{0}
\end{aligned}
$$

- Estimation of initial conditions
- Dedicated classical algorithm
- Corrections to a "good-enough" a priori
- Test of all possible configurations within a frame of dimension 6 (!)
- Using of an algorithm selecting "good" initial conditions, and iterating

Laplace method

$$
\begin{aligned}
& \mathbf{L}(t) \equiv\left(\begin{array}{c}
\cos \delta \cos \alpha \\
\cos \delta \sin \alpha \\
\sin \delta
\end{array}\right) \\
& \mathbf{R}(t) \equiv-R_{0}\left(\begin{array}{c}
\cos \phi \cos \theta \\
\cos \phi \sin \theta \\
\sin \theta
\end{array}\right) \\
& \mathbf{r}=d \mathbf{L}-\mathbf{R}
\end{aligned}
$$

- Unknowns: $\mathbf{r}, \dot{\mathbf{r}}$ (and d, distance station-satellite)
- 3 observations: $\mathbf{L}\left(t_{1}\right), \mathbf{L}\left(t_{2}\right), \mathbf{L}\left(t_{3}\right)$
- Taylor expansion

$$
\mathbf{L}\left(t_{i}\right) \simeq \mathbf{L}\left(t_{0}\right)+\left(t_{i}-t_{0}\right) \dot{\mathbf{L}}\left(t_{0}\right)+\frac{1}{2}\left(t_{i}-t_{0}\right)^{2} \ddot{\mathbf{L}}\left(t_{0}\right)
$$

with $t_{0}=\frac{1}{3}\left(t_{1}+t_{2}+t_{3}\right): \mathbf{L}\left(t_{0}\right), \dot{\mathbf{L}}\left(t_{0}\right), \ddot{\mathbf{L}}\left(t_{0}\right)$ known

- at $t_{0}: \ddot{\mathbf{r}}=\ddot{d} \mathbf{L}+d \ddot{\mathbf{L}}+2 \dot{d} \dot{\mathbf{L}}-\ddot{\mathbf{R}}$ where $\ddot{\mathbf{r}}=-\mu \frac{\mathbf{r}}{r^{3}}$

Shape of the solution for $d: d=\frac{A}{r^{3}}+B$
Shape of the solution for $\dot{d}: \dot{d}=\mu \frac{A_{2}}{r^{3}}+\frac{B_{2}}{r^{3}}$

- after algebraic steps:

■ r obtained from $r^{2}=d^{2}+R^{2}-2 \mathbf{L} . \mathbf{R}$
Polynom of deg. 8 and then $\left.\mathbf{r}\left(t_{0}\right), \dot{\mathbf{r}}\left(t_{0}\right)^{\prime}\right)$
■ but some singularities exist

Improvement of the Laplace method

$$
\ddot{\vec{r}}=\mu\left(-1+\frac{3}{2} J_{2}\left(\frac{R_{\oplus}}{r}\right)^{2}\left(3 \sin ^{2} \phi-1\right)\right) \frac{\vec{r}}{r^{3}} \quad \text { (Laas-Bourez, et al., 2012) }
$$

Field of view of the Meo telescope

Lageos being in the FOV during approx. 800 sec

Multi-Objective Genetic Algorithms (MOGA) How do genetic algorithms work ?

- Find the set of initial conditions (keplerian elements) that minimizes criteria at hand. These criteria are defined as functions of the initial conditions.
- evaluation for a set of vectors of possible initial conditions (implicit parallelism).
- Between two successive iterations, some vectors are replaced by others and the best are archived. The evolution of the set of initial conditions is governed by mutations (random small changes in vectors of possible initial conditions) and crossover (mix two vectors of possible initial conditions).
■ At the end of the iteration procedure, a set of solutions is supplied.
- MOGA used here: ϵ-MOEA [Deb et al., 2003] Deb, K., M. Mohan, S. Mishra (2003) A Fast Multi-objective Evolutionary Algorithm for Finding Well-Spread Pareto-Optimal Solutions. KanGAL Report Number 2003002.

Orbital modeling

- An analytical approach

■ Huge number of different cases to be tested: very quick computations (required)
■ Main perturbations accounted for (required), at least J_{2}
■ Valid for all dynamical configurations: written in a set of equinoctial elements

$$
\mathbf{E} \equiv\left(a, \Omega+\omega+M, e \cos (\Omega+\omega), e \sin (\Omega+\omega), \sin \frac{i}{2} \cos \Omega, \sin \frac{i}{2} \sin \Omega\right)
$$

- Shape of the solution

$$
\mathbf{E}(t)=\overline{\mathbf{E}}(t)+\mathcal{L}(\overline{\mathbf{E}}) \frac{\partial W}{\partial \overline{\mathbf{E}}}(\overline{\mathbf{E}}(t))
$$

- Initial conditions
- Mean initial condition: $\overline{\mathbf{E}}\left(t_{0}\right)$ (6 elements adjusted)
- Osculating initial condition: $\mathbf{E}\left(t_{0}\right)=\overline{\mathbf{E}}\left(t_{0}\right)+\mathcal{L}(\overline{\mathbf{E}}) \frac{\partial W}{\partial \overline{\mathbf{E}}}\left(\overline{\mathbf{E}}\left(t_{0}\right)\right)$

Analytical approach

- mean elements $\overline{\mathbf{E}}$: long periodic and secular effects

■ induced mainly by zonal coefficients on the angles
■ main effect: J_{2}

$$
\begin{aligned}
\Delta \dot{\Omega} & =-\frac{3}{2}\left(\frac{R_{e}}{a}\right)^{2} n J_{2} \frac{\cos i}{\left(1-e^{2}\right)^{2}} \Delta \dot{\omega}=-\frac{3}{4}\left(\frac{R_{e}}{a}\right)^{2} n J_{2} \frac{1-5(\cos i)^{2}}{\left(1-e^{2}\right)^{2}} \\
\Delta \dot{M} & =-\frac{3}{4}\left(\frac{R_{e}}{a}\right)^{2} n J_{2} \frac{1-3(\cos i)^{2}}{\left(1-e^{2}\right)^{3 / 2}}
\end{aligned}
$$

■ short periodic part described through the so-called "generator" W :

$$
\begin{aligned}
W_{2} & =-\mu J_{2} \frac{1}{\bar{n} a}\left(\frac{R_{0}}{a}\right)^{2} \frac{1}{\eta^{3}}\left(\left(\frac{1}{2}-\frac{3}{4} \sin ^{2} i\right)(v-u+e \sin u+e \sin v)\right. \\
& +4 \cos ^{2} \frac{i}{2} \sin \frac{i}{2} \cos (\omega+v) \sin \frac{i}{2} \sin (\omega+v) e \cos v \\
& +3 \cos ^{2} \frac{i}{2} \sin \frac{i}{2} \cos (\omega+v) \sin \frac{i}{2} \sin (\omega+v) \\
& \left.-\cos ^{2} \frac{i}{2}\left(\left(\sin \frac{i}{2} \cos (\omega+v)\right)^{2}-\left(\sin \frac{i}{2} \sin (\omega+v)\right)^{2}\right) e \sin v\right)
\end{aligned}
$$

Example: $a(t)=\bar{a}+\frac{3}{2} J_{2} \frac{R_{e}}{\bar{a}} \sin ^{2} \bar{i} \cos 2(\bar{\omega}+\bar{M})$

An iteration of the MOGA

- The MOGA provides a vector of initial conditions.
- Initial conditions used to compute an analytical orbit.
- Analytical orbit used to compute predicted measurements.
- range
- RADEC

■ ...

- Predicted measurements compared to the true data
- Norm of the differences used as a criterion to minimize.
■ LS cost function

Preliminary step: Parameterization of the MOGA

- GA

■ Initialization: population of 400 chromosomes
■ sma $a \in[12200$ 15600] km for Lageos, $a \in[4000045000] \mathrm{km}$ for Telecom-2D
■ eccentricity $\in\left[\begin{array}{ll}0 & 0.1\end{array}\right]$ (to save CPU time)

- inclination $\in\left[\begin{array}{ll}0 & 180^{\circ}\end{array}\right]$

■ angles $\Omega, \omega M \in\left[0360^{\circ}[\right.$
■ Mutation. $p=0.9$
■ Crossover. $p=0.16667=1 / 6$
■ Stop condition: end after 500000 iterations (total CPU: 30h)

- Boundaring the intervals in a realistic way

■ Example: Choice of an a priori s.m.a. (based on the observed period)

1. Circular orbit hypothesis
2. and then possible changes to evaluate r instead of a during a pass (large eccentricities accounted for)

- Use of admissible regions

Test case1: orbit determination of the Lageos SLR sat.

- Very precise orbit from the ILRS network available at the level of $\approx 1 \mathrm{~cm}$
- This case:

■ Eight days of SLR data (MJD 5602456031 included, April 2012)

- 29 tracking stations (2 034 measurements).
- Particularities of the test

■ Search not only for the best vector of initial conditions,
■ Additionally search for an optimal sub-network of SLR stations

- Two objectives are considered:
- the RMS of differences between predicted measurements and the real data (to be minimized)
■ the number of SLR stations involved in the computation (to be maximized).
Without it, the MOGA would probably tend to use a minimal set of stations to get better results regarding the initial conditions.

Test case1: results

LAGEOS 1 orbit
2012, Apr. 7th to 2012, Apr. 8th

- Reference orbit (gins s/w):

RMS of differences is 2.15 cm

■ Adjusted orbit

■ $a_{0}=12274.840(12270.009) \mathrm{km}: \Delta a=4.831 \mathrm{~km}$

- $e_{0}=0.004408$ (0.004261): $\Delta e=0.000147$
- $I_{0}=109.839(109.801)^{\circ}: \Delta I=0.038^{\circ}$
- $\Omega_{0}=203.306(203.323)^{\circ}: \Delta \Omega=0.017^{\circ}$
$\square \omega_{0}+M_{0}=76.538(76.616)^{\circ}: \Delta(\omega+M)=0.078^{\circ}$
- Interpretations
- Analytical model suitable for the dynamics
- G.A. have a good capability over the global scale. For better results:
- Change of the GA parameters

■ LS adjustment

Test case1: validation of the dynamical model

- Reference orbit (gins s/w):

RMS of differences is 2.15 cm

Adjusted orbit
■ $a_{0}=12274.840(12270.009) \mathrm{km}: \Delta a=4.831 \mathrm{~km}$
■ $e_{0}=0.004408$ (0.004261): $\Delta e=0.000147$
■ $I_{0}=109.839(109.801)^{\circ}: \Delta I=0.038^{\circ}$
$\square \Omega_{0}=203.306(203.323)^{\circ}: \Delta \Omega=0.017^{\circ}$
■ $\omega_{0}+M_{0}=76.538(76.616)^{\circ}: \Delta(\omega+M)=0.078^{\circ}$

- Sensitivity analysis

■ $a_{0}^{\text {diff } \min }=12273.440 \mathrm{~km}$
(cf Figure: a $(x$-axis, m), rms (y-axis, m))

- $I_{0}^{\text {diff }}$ min $=110.639^{\circ}$
- $\Omega_{0}^{\text {diff } m i n}=201.261^{\circ}$

Test case2: Telecom2D

- The TAROT network
- Calern (Grasse,F) ; la Silla (Chile)
- large FOV $\left(1.86^{\circ} \times 1.86^{\circ}\right)$
- aperture: 250 mm
- automatic

■ Upper magnitude: 15 (GEO)
■ Measur. accuracy: 700 m (GEO)

Test case2: Telecom2D, the data

- Data set:

■ nine days of angular data (MJD 5614756156 included, Apr. 2012) from the two TAROT-telescopes

■ 86 measurements (27 for Chile and 59 for France).

- The MOGA searches for the best vector of initial conditions
- Two objectives are considered (both to be minimized), the RMS of differences between predicted measurements and the real data for:

■ elevation
■ azimut

Test case2, Telecom2D: results

- Reference orbit (Romance s/w)

- The final archive provided by the MOGA. For the best solution regarding both RMS of differences, the RMS values of differences are:
- 0.0485° for elevation
- 0.0742° for azimut
- Sensitivity analysis: Same concl. as for LAG1
- Adjusted orbit (orbital elements):

```
\(\square a_{0}=42171.560(42165.980) \mathrm{km}: \Delta a=5.580 \mathrm{~km}\)
\(\square e_{0}=0.0000923\) (0.0001906): \(\Delta e=0.0000983\)
- \(I_{0}=5.578(5.583)^{\circ}: \Delta I=0.005^{\circ}\)
■ \(\Omega_{0}=62.897(61.480)^{\circ}: \Delta \Omega=1.417^{\circ}\)
\(\square \omega_{0}+M_{0}=257.180(256.934)^{\circ}: \Delta(\omega+M)=0.246^{\circ}\)
```

- Interpretations

■ Analytical model suitable

- but to be improved (zonal+tesseral parameters)

Next step: admissible regions

$\mathcal{E}_{E}(\rho, \dot{\rho})=\frac{1}{2}\|\dot{P}\|^{2}-\frac{\mu_{E}}{\|P\|}$,
(Tommei et al., 2007)

Fig. 6 Admissible region for a space debris \mathcal{D} from radar data when condition (11) is satisfied a taking into account the observation: $\mathcal{E}_{E}=0$ is the curve of zero geocentric energy and it is an ellip

Example of admissible region from radar/range data

Fig. 4 Admissible region for a space debris \mathcal{D} taking into account the condition (A^{\prime}) instead of (A)
Example of admissible region from optical data

Conclusions and prospects

- Already done
- Combination of G.A. and a modelling of the orbital motion

■ Different kinds of data (that can be combined)
■ Goal reached: determining from scratch the order of the initial values of an orbital arc

- G.A. refinements
- Optimization on the choice of parameters

■ Implementing a better stop condition (to reduce CPU time)

- Analytical modelling enhancements
- Tesseral parameters
- Atmospheric drag for longer arcs ?

■ ... but impact on the total CPU time

- Multiplying the tests

■ Really testing the capabilities for TSA...
■ .. and in downgraded conditions (data sparse in time)

