Orbit determination methods in view of the PODET project

Florent Deleflie¹, David Coulot², Romain Decosta¹, Basile van Cooten³, Alain Vienne¹, Pascal Richard⁴

 ¹ Institut de Mécanique Céleste et de Calcul des Ephémérides, Paris et Université Lille 1
 ² IGN/LAREG, Université Paris Diderot, Paris
 ³ ENPC Champs sur Marne
 ⁴ Centre National d'Etudes Spatiales, Toulouse

7th June 2013

PODET and PODET-DEB projects

2/19

Overview and aim of the study

- Main goal: Fitting an orbit on tracking data
 - range: \equiv SLR data
 - R.A., Decl.: \equiv after astrometric reduction of images

Usual methods and their main drawbacks

- LS methods: "good enough" a priori values required
- not valid for uncatalogued objects !
- "Gauss, Laplace, Escobal...":
 - not valid in any geometrical configuration (singularities)
 - poor dynamical modelling (keplerian motion...)
 - very poor results for some cases, not helpful as a priori
- New approach based on a genetic algorithm
 - supposed to be valid in all dynamical configurations
 - can be used for TSA, or over a couple of days
 - without any a priori knowledge of the trajectory
 - 2 preliminary results shown: 1 SLR satellite, 1 GEO

Orbital modelling and fit

Equations of motion:

$$\frac{d^2 \mathbf{r}}{dt^2} = \mathbf{F}(\mathbf{r}, \dot{\mathbf{r}}, t, \sigma)$$
$$\mathbf{r}(t_0) = \mathbf{r}_0 \qquad \dot{\mathbf{r}}(t_0) = \dot{\mathbf{r}}_0$$

- Estimation of initial conditions
 - Dedicated classical algorithm
 - Corrections to a "good-enough" a priori
 - Test of all possible configurations within a frame of dimension 6 (!)
 - Using of an algorithm selecting "good" initial conditions, and iterating

Laplace method

$$\mathbf{L}(t) \equiv \begin{pmatrix} \cos \delta \cos \alpha \\ \cos \delta \sin \alpha \\ \sin \delta \end{pmatrix}$$
$$\mathbf{R}(t) \equiv -R_0 \begin{pmatrix} \cos \phi \cos \theta \\ \cos \phi \sin \theta \\ \sin \theta \end{pmatrix}$$
$$\mathbf{r} = d\mathbf{L} - \mathbf{R}$$

- Unknowns: $\mathbf{r}, \dot{\mathbf{r}}$ (and d, distance station-satellite)
- 3 observations: **L**(*t*₁), **L**(*t*₂), **L**(*t*₃)
- Taylor expansion

$$\mathsf{L}(t_i)\simeq\mathsf{L}(t_0)+(t_i-t_0)\dot{\mathsf{L}}(t_0)+rac{1}{2}(t_i-t_0)^2\ddot{\mathsf{L}}(t_0)$$

with $t_0 = \frac{1}{3}(t_1 + t_2 + t_3)$: $\mathbf{L}(t_0)$, $\dot{\mathbf{L}}(t_0)$, $\ddot{\mathbf{L}}(t_0)$ known at t_0 : $\ddot{\mathbf{r}} = \ddot{d}\mathbf{L} + d\ddot{\mathbf{L}} + 2\dot{d}\dot{\mathbf{L}} - \ddot{\mathbf{R}}$ where $\ddot{\mathbf{r}} = -\mu \frac{\mathbf{r}}{r^3}$ Shape of the solution for d: $d = \frac{A}{r^3} + B$ Shape of the solution for \dot{d} : $\dot{d} = \mu \frac{A_2}{r^3} + \frac{B_2}{r^3}$

after algebraic steps:

- r obtained from $r^2 = d^2 + R^2 2\mathbf{L}.\mathbf{R}$ Polynom of deg. 8 and then $\mathbf{r}(t_0)$, $\dot{\mathbf{r}}(t_0)$
- but some singularities exist > < = > =

Improvement of the Laplace method

$$\ddot{ec{r}} = \mu \left(-1 + rac{3}{2} J_2 \left(rac{R_\oplus}{r}
ight)^2 (3\sin^2 \phi - 1)
ight) rac{ec{r}}{r^3}$$
 (Laas-Bourez, et al., 2012)

Multi-Objective Genetic Algorithms (MOGA) How do genetic algorithms work ?

- Find the set of initial conditions (keplerian elements) that minimizes criteria at hand. These criteria are defined as functions of the initial conditions.
- evaluation for a set of vectors of possible initial conditions (implicit parallelism).
- Between two successive iterations, some vectors are replaced by others and the best are archived. The evolution of the set of initial conditions is governed by **mutations** (random small changes in vectors of possible initial conditions) and **crossover** (mix two vectors of possible initial conditions).
- At the end of the iteration procedure, a set of solutions is supplied.
- MOGA used here: ε-MOEA [Deb et al., 2003] Deb, K., M. Mohan, S. Mishra (2003) A Fast Multi-objective Evolutionary Algorithm for Finding Well-Spread Pareto-Optimal Solutions. KanGAL Report Number 2003002.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Orbital modeling

- An analytical approach
 - Huge number of different cases to be tested: very quick computations (required)
 - Main perturbations accounted for (required), at least J_2
 - Valid for all dynamical configurations: written in a set of equinoctial elements

$$\mathbf{E} \equiv (a, \Omega + \omega + M, e \cos(\Omega + \omega), e \sin(\Omega + \omega), \sin \frac{i}{2} \cos \Omega, \sin \frac{i}{2} \sin \Omega)$$

Shape of the solution

$$\mathbf{E}(t) = \mathbf{\bar{E}}(t) + \mathcal{L}(\mathbf{\bar{E}}) \frac{\partial W}{\partial \mathbf{\bar{E}}}(\mathbf{\bar{E}}(t))$$

- Initial conditions
 - Mean initial condition: $\mathbf{\bar{E}}(t_0)$ (6 elements adjusted)
 - Osculating initial condition: $\mathbf{E}(t_0) = \mathbf{\bar{E}}(t_0) + \mathcal{L}(\mathbf{\bar{E}}) \frac{\partial W}{\partial \mathbf{\bar{E}}} (\mathbf{\bar{E}}(t_0))$

Analytical approach

- mean elements E
 long periodic and secular effects
 - induced mainly by zonal coefficients on the angles $\text{ main effect: } J_2 \\ \Delta \dot{\Omega} = -\frac{3}{2} \left(\frac{R_e}{a}\right)^2 n J_2 \frac{\cos i}{(1-e^2)^2} \Delta \dot{\omega} = -\frac{3}{4} \left(\frac{R_e}{a}\right)^2 n J_2 \frac{1-5(\cos i)^2}{(1-e^2)^2} \\ \Delta \dot{M} = -\frac{3}{4} \left(\frac{R_e}{a}\right)^2 n J_2 \frac{1-3(\cos i)^2}{(1-e^2)^{3/2}}$

■ short periodic part described through the so-called "generator" W:

$$W_{2} = -\mu J_{2} \frac{1}{\bar{n}a} \left(\frac{R_{0}}{a}\right)^{2} \frac{1}{\eta^{3}} \left(\left(\frac{1}{2} - \frac{3}{4}\sin^{2}i\right)(v - u + e\sin u + e\sin v) + 4\cos^{2}\frac{i}{2}\sin\frac{i}{2}\cos(\omega + v)\sin\frac{i}{2}\sin(\omega + v)e\cos v + 3\cos^{2}\frac{i}{2}\sin\frac{i}{2}\cos(\omega + v)\sin\frac{i}{2}\sin(\omega + v) - \cos^{2}\frac{i}{2}\left(\left(\sin\frac{i}{2}\cos(\omega + v)\right)^{2} - \left(\sin\frac{i}{2}\sin(\omega + v)\right)^{2}\right)e\sin v\right)$$

Example:
$$a(t) = \bar{a} + \frac{3}{2}J_2\frac{R_e}{\bar{a}}\sin^2\bar{i}\cos 2(\bar{\omega} + \bar{M})$$

A D > A D > A D > A D >

An iteration of the MOGA

- The MOGA provides a vector of initial conditions.
- Initial conditions used to compute an analytical orbit.
- Analytical orbit used to compute predicted measurements.
 - range
 - RADEC
 - · ...
- Predicted measurements compared to the true data
 - Norm of the differences used as a criterion to minimize.
 - LS cost function

Preliminary step: Parameterization of the MOGA

- GA
 - Initialization: population of 400 chromosomes
 - sma $a \in [12200 \ 15600]$ km for Lageos,
 - $a \in [40000 \ 45000]$ km for Telecom-2D
 - eccentricity $\in [0 \ 0.1]$ (to save CPU time)
 - inclination \in [0 180°[
 - angles Ω , $\omega M \in [0 \ 360^{\circ}[$
 - Mutation. p = 0.9
 - Crossover. p = 0.16667 = 1/6
 - Stop condition: end after 500 000 iterations (total CPU: 30h)
- Boundaring the intervals in a realistic way
 - Example: Choice of an *a priori* s.m.a. (based on the **observed period**)
 - 1. Circular orbit hypothesis

2. and then possible changes to evaluate r instead of a during a pass (large eccentricities

accounted for)

Use of admissible regions

・ロット (雪) (山) (日)

Test case1: orbit determination of the Lageos SLR sat.

- \blacksquare Very precise orbit from the ILRS network available at the level of $\approx 1 cm$
- This case:
 - Eight days of SLR data (MJD 56 024 56 031 included, April 2012)
 - 29 tracking stations (2 034 measurements).
- Particularities of the test
 - Search not only for the best vector of initial conditions,
 - Additionally search for an optimal sub-network of SLR stations
 - Two objectives are considered:
 - the RMS of differences between predicted measurements and the real data (to be minimized)
 - the number of SLR stations involved in the computation (to be maximized).

Without it, the MOGA would probably tend to use a minimal set of stations to get better results regarding the initial conditions.

Test case1: results

Reference orbit (gins s/w): RMS of differences is 2.15cm

Adjusted orbit

- $a_0 = 12274.840 (12270.009) \text{ km}$: $\Delta a = 4.831 \text{ km}$
- $e_0 = 0.004408 \ (0.004261): \Delta e = 0.000147$
- $I_0 = 109.839(109.801)^\circ$: $\Delta I = 0.038^\circ$
- $\tilde{\Omega}_0 = 203.306 (203.323)^\circ : \Delta \Omega = 0.017^\circ$
- $\omega_0 + M_0 = 76.538 \ (76.616)^\circ: \ \Delta(\omega + M) = 0.078^\circ$

Interpretations

- Analytical model suitable for the dynamics
- G.A. have a good capability over the global scale. For better results:
 - Change of the GA parameters

(日) (同) (日) (日)

LS adjustment

Test case1: validation of the dynamical model

Test case2: Telecom2D

The TAROT network

- Calern (Grasse,F) ; la Silla (Chile)
- large FOV $(1.86^{\circ} \times 1.86^{\circ})$
- aperture: 250 mm
- automatic
- Upper magnitude: 15 (GEO)
- Measur. accuracy: 700 m (GEO)

Test case2: Telecom2D, the data

- Data set:
 - nine days of angular data (MJD 56 147 56 156 included, Apr. 2012) from the two TAROT-telescopes
 - 86 measurements (27 for Chile and 59 for France).
- The MOGA searches for the best vector of initial conditions
- Two objectives are considered (both to be minimized), the RMS of differences between predicted measurements and the real data for:
 - elevation
 - azimut

Test case2, Telecom2D: results

- Reference orbit (Romance s/w)
- The final archive provided by the MOGA. For the best solution regarding both RMS of differences, the RMS values of differences are:
 - 0.0485° for elevation
 - 0.0742° for azimut
- Sensitivity analysis: Same concl. as for LAG1
- Adjusted orbit (orbital elements):
 - $a_0 = 42171.560 (42165.980) \text{ km}$: $\Delta a = 5.580 \text{ km}$
 - $e_0 = 0.0000923 (0.0001906): \Delta e = 0.0000983$
 - $I_0 = 5.578(5.583)^\circ: \Delta I = 0.005^\circ$
 - $\Omega_0 = 62.897 \ (61.480)^\circ : \Delta \Omega = 1.417^\circ$
 - $\hat{\omega_0} + M_0 = 257.180 \ (256.934)^\circ: \ \Delta(\omega + M) = 0.246^\circ$

Interpretations

- Analytical model suitable
- but to be improved (zonal+tesseral parameters)

Next step: admissible regions

Fig. 6 Admissible region for a space debris D from radar data when condition (11) is satisfied a taking into account the observation: $\mathcal{E}_F = 0$ is the curve of zero geocentric energy and it is an ellip

Example of admissible region from radar/range data

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Fig. 4 Admissible region for a space debris D taking into account the condition (A') instead of (A)

Example of admissible region from optical data

Conclusions and prospects

- Already done
 - Combination of G.A. and a modelling of the orbital motion
 - Different kinds of data (that can be combined)
 - Goal reached: determining from scratch the order of the initial values of an orbital arc
- G.A. refinements
 - Optimization on the choice of parameters
 - Implementing a better stop condition (to reduce CPU time)
- Analytical modelling enhancements
 - Tesseral parameters
 - Atmospheric drag for longer arcs ?
 - ... but impact on the total CPU time
- Multiplying the tests
 - Really testing the capabilities for TSA...
 - .. and in downgraded conditions (data sparse in time)

