Resonances due to third body perturbations in the dynamics of MEOs

L. Stefanelli, G. Metris Geoazur, Université de Nice Sophia-Antipolis, CNRS (UMR 7329), Observatoire de la Côte d'Azur

Introduction: long term dynamics of MEOs

- * **Context:** space security
- orbits of positionning satellites constellations (GNSS): GPS, Galileo ...
- parking orbits for satellites at end of life

MEO: Medium Earth Orbits, altitude aboute 20 000 km.

Long term: at least 100 years (or more).

Main problem: growth of the eccentricity \Rightarrow can leads dangerous orbits intersections

Resonances: potential source of instability

Lunisolar: the resonance source is a third body (Sun or Moon) $\downarrow\downarrow$

* Aim: study the interaction between resonances and MEO orbits \Rightarrow analytical and numerical studies of resonances, mainly those close to Galileo orbits

Summary

Resonances:

- the resonance source is a third body gravity potential
- involve combinations of frequencies of the satellite and of the Sun/Moon:
 - the frequencies related to Sun/Moon are known
 - the frequencies of the satellite are determined by initial conditions and perturbations.

Main *perturbations* generating secular variations of the satellite frequencies:

- Earth gravitational field, in particular the quadrupole moment J_2
- Third-body perturbations: Sun and/or Moon
- The relative importance changes with the altitude: for MEOs the third body perturbations may become non negligible.

Outline:

- Identification of the resonances in presence of J_2 secular effects (cfr. Hughes 1980) and contribution of the third body secular effects (new).
- Analytical and numerical studies of resonances of the form $\alpha \dot{\omega} + \beta \dot{\Omega} \approx 0$, in particular $2\dot{\omega} + \dot{\Omega} \approx 0$ using a simplified model in three steps.
- Study of the eccentricity.

The Sun gravity potential as a source of resonances

$$\mathcal{P}_{\odot} = \mu_{\odot} \sum_{n=2}^{\infty} \frac{a^n}{a_{\odot}^{n+1}} \sum_{m=0}^n (2 - \delta_{0m}) \frac{(n-m)!}{(n+m)!}$$
$$\times \sum_{p=0}^n \bar{F}_{n,m,p}(i) \sum_{h=0}^n \bar{F}_{n,m,h}(\epsilon) \sum_{q=-\infty}^\infty G_{n,p,q}(e) \sum_{j=-\infty}^\infty H_{n,p,j}(e_{\odot})$$
$$\times \cos \psi$$

$$\psi = \alpha \omega + \beta \Omega + \zeta M + \eta \omega_{\odot} + \beta \Omega_{\odot} + \gamma M_{\odot}$$

$$\alpha=n-2p$$
 , $\beta=m$, $\zeta=n-2p+q$, $\eta=n-2h$, $\gamma=n-2h-j$;.

 $a, e, i, \Omega, \omega, M$ orbital elements of the satellite $\mu_{\odot} = Gm_{\odot}$, ϵ obliquity of the ecliptic $a_{\odot}, e_{\odot}, \Omega_{\odot}, \omega_{\odot}, M_{\odot}$ orbital elements of the Sun $\bar{F}_{n,m,p}$: inclination functions, $G_{n,p,q}$, $H_{n,p,q}$: Hansen coefficients (see Hughes 1980)

Resonance:

 $\dot{\psi} \approx 0$

Here we study:

$$\alpha\dot{\omega} + \beta\dot{\Omega} \approx 0$$

Case of the Moon

$$\mathcal{P}_{\mathbb{Q}} = \mu_{\mathbb{Q}} \sum_{n=2}^{\infty} \frac{a^{n}}{a_{\mathbb{Q}}^{n+1}} \sum_{m=0}^{n} \sum_{s=0}^{n} (-1)^{m} \frac{2 - \delta_{0m}}{2} \frac{(n-s)!}{(n+s)!} \\ \times \sum_{p=0}^{n} \bar{F}_{n,m,p}(i) \sum_{h=0}^{n} \bar{F}_{n,m,h}(i_{\mathbb{Q}}) \sum_{q=-\infty}^{\infty} G_{n,p,q}(e) \sum_{j=-\infty}^{\infty} H_{n,p,j}(e_{\mathbb{Q}}) \\ \times \left[(-1)^{n-s} U_{n,m,-s}(\epsilon) \cos \psi_{+} + U_{n,m,s}(\epsilon) \cos \psi_{-} \right] \\ \psi_{\pm} = \alpha \omega + \beta \Omega + \zeta M \pm \eta \omega_{\mathbb{Q}} \pm s \Omega_{\mathbb{Q}} \pm \gamma M_{\mathbb{Q}} \\ \alpha = n - 2p , \beta = m , \zeta = n - 2p + q , \eta = n - 2h , \gamma = n - 2h - j . \\ a, e, i, \Omega, \omega, M \text{ orbital elements of the satellite} \\ \mu_{\mathbb{Q}} = Gm_{\mathbb{Q}} , \epsilon \text{ obliquity of the ecliptic} \\ \mu_{\mathbb{Q}}, e_{\mathbb{Q}}, i_{\mathbb{Q}}, \Omega_{\mathbb{Q}}, \omega_{\mathbb{Q}}, M_{\mathbb{Q}} \text{ orbital elements of the Moon} \\ \bar{F}_{n,m,p}: \text{ inclination functions, } G_{n,p,q}, H_{n,p,q}: \text{ Hansen coefficients (see Hughes 1980)}$$

The J_2 perturbation - secular effets

$$\dot{\omega}_{J_2} = -c_\omega \left(\frac{R_{\oplus}}{a}\right)^{7/2} \frac{1 - 5\cos^2 i}{(1 - e^2)^2} , \qquad \dot{\Omega}_{J_2} = -2c_\omega \left(\frac{R_{\oplus}}{a}\right)^{7/2} \frac{\cos i}{(1 - e^2)^2}$$
$$c_\omega \equiv \frac{3}{4} J_2 \frac{\sqrt{Gm_{\oplus}}}{R_{\oplus}^{3/2}} ,$$

Resonance: $\alpha \dot{\omega} + \beta \dot{\Omega} \approx 0 \Rightarrow c_{\omega} Y(a, e) P(\cos i) \approx 0 \Leftrightarrow P(\cos i) = 0$

$$Y(a,e) \equiv \left(\frac{R_{\oplus}}{a}\right)^{7/2} (1-e^2)^{-2}, \quad P(\cos i) \equiv \alpha \left(5\cos^2 i - 1\right) - 2\beta \cos i.$$

- The existence of resonances depends only on inclination: the zeros of $P(\cos i)$ "correspond" to the resonant inclinations.
- For each pair (α, β) there are two possible resonant inclinations.

Example: $\alpha = 2, \beta = 1 \rightarrow 2\dot{\omega} + \dot{\Omega} \approx 0$ $\cos i_1 = 0.5582 \Rightarrow i_1 \approx 56.1 \text{ deg}$ $\cos i_2 = -0.3582 \Rightarrow i_2 \approx 110.1 \text{ deg}$

The third body perturbation - secular effects

Secular effets due to the Sun/Moon perturbation:

$$\dot{\Omega}_{\rm p} = -c_{\rm p} \ (5 - 3\eta^2) \frac{\cos i}{n\eta} , \qquad \dot{\omega}_{\rm p} = c_{\rm p} \ \frac{5\cos^2 i - \eta^2}{n\eta}$$

with p=moon or p=sun and

$$c_{\rm sun} = \frac{3}{16} \frac{Gm_{\odot}}{a_{\odot}^3 \eta_{\odot}^3} (3\cos^2 \epsilon - 1), \quad c_{\rm moon} = \frac{3}{16} \frac{Gm_{\emptyset}}{a_{\emptyset}^3 \eta_{\emptyset}^3} (3\cos^2 i_{\emptyset} - 1)(3\cos^2 \epsilon - 1)$$
$$= (1 - e^2)^{1/2}, \ \eta_{\odot} = (1 - e_{\odot}^2)^{1/2}, \ \eta_{\emptyset} = (1 - e_{\emptyset}^2)^{1/2}.$$

Including all the perturbations:

$$\dot{\Omega}_{\text{tot}} = \dot{\Omega}_{J_2} + \dot{\Omega}_{\text{sun}} + \dot{\Omega}_{\text{moon}}, \quad \dot{\omega}_{\text{tot}} = \dot{\omega}_{J_2} + \dot{\omega}_{\text{sun}} + \dot{\omega}_{\text{moon}}$$

$$\alpha \dot{\omega}_{\text{tot}} + \beta \dot{\Omega}_{\text{tot}} = -\frac{c_{\omega}}{\eta^4} \left(\frac{R_{\oplus}}{a}\right)^{7/2} P(\cos i, a, e)$$

Again

$$\alpha \dot{\omega}_{\text{tot}} + \beta \dot{\Omega}_{\text{tot}} \approx 0 \qquad \Leftrightarrow \qquad P(\cos i, a, e) = 0$$

 η

The third body perturbation - secular effects

 $P(\cos i, a, e) = a_2 \cos^2 i + a_1 \cos i + a_0$

is a polynomial whose coefficients now depend on e and a by means of $\eta = (1 - e^2)^{1/2}$ and the coefficient $c_{p,\omega} = -\frac{c_{\text{sun}} + c_{\text{moon}}}{nc_{\omega}(R_{\oplus}/a)^{7/2}}$:

 $a_2 = 5\alpha(\eta^3 c_{p,\omega} - 1)$, $a_1 = \beta(2 - \eta^3(5 - 3\eta^2)c_{p,\omega})$, $a_0 = \alpha(1 - \eta^5 c_{p,\omega})$.

 \Rightarrow Main consequence: we are no more in the case of resonances depending only on inclination.

 \Rightarrow For each (α, β) the resonant inclinations change with eccentricity: fix $e \rightsquigarrow$ get i

56.11 110.9 56.1 110.8 56.09 56.08 110.7 56.07 110.6 56.06 0.8 0.2 0.4 0.6 0.2 0.4 0.6 0.8

Example: $\alpha = 2, \beta = 1$ and a = 29600 km. Left: i_2 , right: i_1 .

eccentricity, e

eccentricity, e

Study of the resonance $2\dot{\omega} + \dot{\Omega} \approx 0$

 \rightsquigarrow In the purely inclination-dependent case (just J_2 secular perturbation) the resonance

 $2\dot{\omega} + \dot{\Omega} \approx 0$

- is associated to one of the largest amplitude terms of the third body perturbation
- is not far from Galileo inclination (about 56°).

We introduce very long period terms : resonant terms.

- Aim: study of the stability properties of a resonance.
- *Method:* Hamiltonian formalism, stability analysis. Resonances are seen as *equilibrium points* of a simplified model.
- More precisely: the resonance $2\dot{\omega} + \dot{\Omega} \approx 0$:
 - stability analysis of the equilibrium points and of the motion in their neighbourhood
 - study of the evolution of the eccentricity

The Hamiltonian model

The Hamiltonian:

$$\mathcal{J} = \mathcal{J}_{\mathrm{Kep}} + \mathcal{J}_{J_2} + \mathcal{J}_{3\mathrm{b}}$$

• $\mathcal{J}_{\mathrm{Kep}}$ Hamiltonian corresponding to the Keplerian motion

$$\mathcal{J}_{\mathrm{Kep}} = -\frac{\mu}{2a}$$

• \mathcal{J}_{J_2} perturbation due the Earth's oblateness

$$\mathcal{J}_{J_2} = \frac{\mu}{a} \frac{J_2}{4} \left(\frac{R_{\oplus}}{a}\right)^2 \left(1 - 3\cos^2 i - 3\sin^2 i \cos(2f + 2\omega)\right)$$

 $\mu = Gm_{\oplus}$, f = true anomaly.

• \mathcal{J}_{3b} perturbation due to the third body (the Sun for the moment)

$$\mathcal{J}_{3\mathrm{b}} = \mathcal{P}_{\odot}$$

Truncation of \mathcal{P}_{\odot} at:

- $n = 2 \Leftarrow \text{fast decrease of } (a/a_{\odot})^n$
- $j = 0 \Leftarrow$ small value of e_{\odot}

Study of the resonance $\alpha \dot{\omega} + \beta \dot{\Omega} \approx 0$: averaging

- 1. First *averaging:* removing the mean anomalies M, M_{\odot} . [cfr. Brouwer 1959]
- 2. Canonical change of variables $(\omega, \Omega, G, H) \rightarrow (\sigma, \xi, \Sigma, \Xi)$ to introduce the resonant angle σ :

$$\sigma = \alpha \omega + \beta \Omega, \quad \Sigma = \frac{H}{\beta} = \frac{1}{\beta} \sqrt{\mu a (1 - e^2)} \cos i,$$

$$\xi = \Omega, \qquad \Xi = G - \frac{\alpha}{\beta} H = \left(1 - \frac{\alpha}{\beta} \cos i\right) \sqrt{\mu a (1 - e^2)}.$$

3. Second averaging: removing the periodic non-resonant terms.

New Hamiltonian:

$$\mathcal{K} = \mathcal{K}(\sigma, \xi, \Sigma, \Xi) = \mathcal{K}_{\mathrm{Kep}} + \mathcal{K}_{J_2, \mathrm{sec}} + \mathcal{K}_{\mathrm{3b, sec}} + \mathcal{K}_{\mathrm{3b, res}}$$

 \star Third body perturbation: we keep only secular and long period terms (= resonant terms associated to the resonance we want to study).

Study of the resonance $\alpha \dot{\omega} + \beta \dot{\Omega} \approx 0$: the reduced problem

Equations of motion - Hamilton equations:

$$\dot{\sigma} = \frac{\partial \mathcal{K}}{\partial \Sigma} , \quad \dot{\Sigma} = -\frac{\partial \mathcal{K}}{\partial \sigma} ,$$
$$\dot{\xi} = \frac{\partial \mathcal{K}}{\partial \Xi} , \quad \dot{\Xi} = -\frac{\partial \mathcal{K}}{\partial \xi} .$$

- *K* does not depend on ξ ⇒ Ξ is constant ⇒ we study only the two equations (1) with Ξ as a parameter
- we study the evolution of the resonant angle σ and the action Σ ;
- Ξ is constant \Rightarrow the evolution of Σ gives us the evolution of i and e.

Resonances = equilibrium points (σ^*, Σ^*) s.t.

$$\alpha \dot{\omega} + \beta \dot{\Omega} = 0 \quad \Leftrightarrow \quad \dot{\sigma} = 0$$

and

$$\dot{\Sigma} = 0$$

Remark: Σ^* gives us $\cos i^* \Rightarrow$ we identify the equilibrium points as (σ^*, i^*) .

(1)

Study of the resonance $\alpha \dot{\omega} + \beta \dot{\Omega} \approx 0$: the reduced problem

$$\dot{\sigma} = \frac{\partial \mathcal{K}_{J_2}}{\partial \Sigma} + \frac{\partial \mathcal{K}_{3\mathrm{b,sec}}}{\partial \Sigma} + \frac{\partial \mathcal{K}_{3\mathrm{b,res}}}{\partial \Sigma} = A(\Sigma) + B(\Sigma) \cos \sigma$$
$$\dot{\Sigma} = -\frac{\partial \mathcal{K}_{3\mathrm{b,res}}}{\partial \sigma} = e^2 C(\Sigma) \sin \sigma$$

In the following:

- linear stability of the equilibrium points of this system
- numerical integration of this system \rightarrow motion near the equilibrium points

Outline: since
$$\frac{\partial \mathcal{K}_{3b,sec}}{\partial \Sigma}$$
, $\frac{\partial \mathcal{K}_{3b,res}}{\partial \Sigma} \ll \frac{\partial \mathcal{K}_{J_2}}{\partial \Sigma}$ we will proceed in 3 steps:
1. only J_2

- 2. J_2 + Sun secular perturbation
- 3. J_2 + Sun secular perturbation + Sun resonant perturbation

Step 1: only J_2 **secular perturbation**

$$\dot{\sigma} = \frac{\partial \mathcal{K}_{J_2}}{\partial \Sigma}, \quad \dot{\Sigma} = -\frac{\partial \mathcal{K}_{3\mathrm{b,res}}}{\partial \sigma}$$

Recall: secular effects due to J_2 imply [cfr. Hughes 1980]:

$$\frac{\partial \mathcal{K}_{J_2}}{\partial \Sigma} = c_{\omega} Y(a, e) P(\cos i) \,,$$

$$Y(a,e) \equiv \left(\frac{R_{\oplus}}{a}\right)^{7/2} (1-e^2)^{-2}, \quad P(\cos i) \equiv \alpha \left(5\cos^2 i - 1\right) - 2\beta \cos i.$$

Moreover:

$$-\frac{\partial \mathcal{K}_{3\mathrm{b,res}}}{\partial \sigma} = e^2 C(\Sigma) \sin \sigma$$

Resonance condition \rightarrow equilibrium points (σ^* , Σ^*) s.t.

$$0 = \dot{\sigma} = c_{\omega} Y P(\cos i^*), \quad 0 = \dot{\Sigma} = e^2 C(\Sigma^*) \sin \sigma^*.$$

Step 1: only J_2 secular perturbation

Looking for equilibrium points is equivalent to solve

- if $e \neq 0$ $P(\cos i) = 0$, $\sin \sigma = 0$
- if $e = 0 P(\cos i) = 0$, $\forall \sigma$

 \rightarrow the existence of resonances depends only on inclination \rightarrow one or two well defined resonant inclinations i^* independent of a and e.

Case $2\dot{\omega} + \dot{\Omega} \approx 0$. Equilibrium points, $e \neq 0$:

$$\sigma^* = 0 \text{ or } \pi, \ \cos i^* = \frac{1 \pm \sqrt{21}}{10} \ \Leftrightarrow \ i_1^* \approx 56.046^\circ \text{ or } i_2^* \approx 110.993^\circ$$

 $\rightarrow i^*$ correspond to the solution(s) of $P(\cos i) = 0$.

Linear stability:

- $\sigma^* = 0$, i_1^* or i_2^* : two centers (stable);
- $\sigma^* = \pi$, i_1^* or i_2^* : two saddles (unstable).

Step 2: J_2 + secular third body perturbation

$$\dot{\sigma} = \frac{\partial \mathcal{K}_{J_2}}{\partial \Sigma} + \frac{\partial \mathcal{K}_{3\mathrm{b,sec}}}{\partial \Sigma} , \qquad \dot{\Sigma} = -\frac{\partial \mathcal{K}_{3\mathrm{b,res}}}{\partial \sigma} .$$

Recall: secular effects due to the Sun imply:

$$\frac{\partial \mathcal{K}_{J_2}}{\partial \Sigma} + \frac{\partial \mathcal{K}_{3\mathrm{b,sec}}}{\partial \Sigma} = -\frac{c_\omega}{(1-e^2)^2} \left(\frac{R_\oplus}{a}\right)^{7/2} \tilde{P}(\cos i),$$
$$\tilde{P}(\cos i) = a_2 \cos^2 i + a_1 \cos i + a_0$$

Again: looking for equilibrium points is equivalent to solve

• if
$$e \neq 0$$
 $\tilde{P}(\cos i) = 0$, $\sin \sigma = 0$

• if
$$e = 0$$
 $\tilde{P}(\cos i) = 0$, $\forall \sigma$

but a_0, a_1, a_2 now depend on a and $e \Rightarrow$ the resonant inclinations now depend on a and $e \Rightarrow$ the equilibrium points are displaced into $i_1^{**}(a, e)$ and $i_1^{**}(a, e)$.

Step 2: phase portrait around equilibrium points

Case $2\dot{\omega} + \dot{\Omega} \approx 0$. Equilibrium points, e = 0.1:

$$\sigma^{**} = 0 \text{ or } \pi, \quad i_1^{**} = 56.065 \text{ or } i_2^{**} = 110.098$$

Question: does this (small) displacement change the stability? *Answer:* numerically: integration of motion.

 \rightarrow The point ($\sigma^* = 0, i_2^{**} = 110.989$) remain a center (stable).

Phase portrait around (0, 110.989), and initial ecccentricity $e_0 = 0.1$.

Step 3: phase portrait around the equilibrium point

$$\dot{\sigma} = \frac{\partial \mathcal{K}_{J_2}}{\partial \Sigma} + \frac{\partial \mathcal{K}_{3\mathrm{b,sec}}}{\partial \Sigma} + \frac{\partial \mathcal{K}_{3\mathrm{b,res}}}{\partial \Sigma}, \quad \dot{\Sigma} = -\frac{\partial \mathcal{K}_{3\mathrm{b,res}}}{\partial \sigma}$$

librium points: $\sigma^* = 0 \text{ or } \pi, \ i^{***} = i_1^{***}(a, e) \text{ or } i_2^{***}(a, e)$

Example: $e = 0.1 \Rightarrow i_1^{***} \approx 53.317^{\circ}, \ i_2^{**}(a, e) = 112.089^{\circ}$

 \rightarrow The point $(0, i_2^{***} = 53.317^{\circ})$ is still a center.

Left: Phase portrait (σ, i) around the equilibrium point $(0, i^{***} = 53.317^{\circ})$. *Right*: time evolution of the resonant angle. Initial eccentricity $e_0 = 0.1$, integration time 1000 years.

Equi

Step 3: phase portrait around the equilibrium point

 \rightarrow The point $(0, i_2^{***} = 53.317^{\circ})$ is still a center.

Left: Phase portrait (σ, e) around the equilibrium point $(0, i^{***} = 53.317^{\circ})$. *Right*: time evolution of the eccentricity. Initial eccentricity $e_0 = 0.1$, integration time 1000 years.

Step 3: J_2 + sec + res third body perturbation

$$\dot{\sigma} = \frac{\partial \mathcal{K}_{J_2}}{\partial \Sigma} + \frac{\partial \mathcal{K}_{3\mathrm{b,sec}}}{\partial \Sigma} + \frac{\partial \mathcal{K}_{3\mathrm{b,res}}}{\partial \Sigma} = A(\Sigma) + B(\Sigma) \cos \sigma ,$$

$$\dot{\Sigma} = -\frac{\partial \mathcal{K}_{3\mathrm{b,res}}}{\partial \sigma} = e^2 C(\Sigma) \sin \sigma$$

 \star Case e = 0. Equilibrium points (analytically):

$$\sigma^* = \pm \arccos(-A/B), \quad \forall i \text{ s.t. } |B| > |A| \ (A(\Sigma) \neq 0)$$

in particular:

$$i = i^{**} \Rightarrow A(\Sigma) = 0, \quad \sigma^* = \pm \pi/2$$

 $\star e = 0 \Rightarrow A, B$ constant \Rightarrow if |B| > |A| and $A \neq B$, the general form of the solution for the equation $\dot{\sigma} = A + B \cos \sigma$ is:

$$\sigma(t) = -2 \arctan\left[\sqrt{\frac{A+B}{B-A}} \tanh\left(\frac{\sqrt{B^2 - A^2}}{2}t + \phi\right)\right]$$

where the constant ϕ depends on the initial conditions of the problem.

Step 3: J_2 + sec + res third body perturbation

We have:

$$\lim_{t \to \infty} \sigma(t) = -\arccos\left(-\frac{A}{B}\right) = \sigma^*$$

 \Rightarrow \forall initial value σ_0 , σ tends to the equilibrium point e = 0, $i = i_0$, $\sigma = \sigma^*$.

- \star Case $2\dot{\omega} + \dot{\Omega} \approx 0$, e = 0:
- $-\arccos\left(-\frac{A}{B}\right) = -90.69^{\circ}$ (cfr figure).
- numerically, resonant angle converges to the asymptotic value $-90.69\,^\circ$

e = 0, $i = 56.1^{\circ}$. Evolution of the resonant angle over a time of 300 years, starting with the initial value $\sigma_0 = 0$. It converges to the value $-1.582 \text{ rad} = -90.69^{\circ}$.

* Note that starting from a different value i_0 (and thus Σ_0) we observe the same behavior but the asymptotic value changes.

Step 3: global phase portrait

Global phase portrait (σ, i) , centered on $(0, i_2^{***} = 112.098^{\circ})$. Initial eccentricity $e_0 = 0.1$, integration time 1000 years.

Study of the eccentricity - complete case - numerical

Dependence of the evolution of the eccentricity on the initial resonant angle

Maximum (green), minimum (red) and final (black) eccentricity, after 300 years. Initial eccentricity $e_0 = 0.1$.

Left: $i_0 = i_1^{***} \approx 53.317^\circ$, right: $i_0 = i_2^{***} \approx 112.098^\circ$

Conclusions and perspectives

- Characterization and stability of the equilibrium points for the resonance $2\dot{\omega} + \dot{\Omega} \approx 0$, for Sun perturbation \rightarrow resonance does not means necessarily danger!
- Existence of asymptotic equilibrium(a) for the circular case.
- Study of the eccentricity as a function of the resonant angle.
- Analytical and numerical study of the eccentricity.
- Extension of the theory to the Moon perturbation and to other selected resonances.
- Formulation in orbital elements if useful.
- Numerical study of the complete (not averaged) system (like in Rossi,2008).