

Testing gravitation using asteroids observations with Gaia

A. Hees - Rhodes University, South Africa D. Hestroffer and P. David - IMCCE, Paris Obs. C. Le Poncin-Lafitte - LNE-SYRTE, Paris Obs.

SF2A, GRAM session 2015 02/06/2015

Institut de Mécanique Céleste et de Calcul des Éphémérides

Motivations to test GR

- Quantum theory of gravity:
 - GR: classic theory (not a quantum theory)
 - at high energy: quantum effects should appear
 - useful to study black holes and the Planck Era
- Unification of all fundamental interactions: unify Standard model of particles with gravitation
- Cosmological and galactic observations required Dark Matter and Dark Energy: not directly observed so far \Rightarrow hints of a deviation from GR ?

I) Equivalence Principle:

- 3 facets: Universality of free fall, Local Position/Lorentz Invariance
- very well tested (10⁻¹³ with Eötwash experiments and with Lunar Laser Ranging; 10⁻⁴ with grav. redshift; no variation of constants)¹
- more accurate measurement needed: alternative (string) theories predict violation smaller² \rightarrow MICROSCOPE accuracy 10⁻¹⁵
- Gravitation \Leftrightarrow space-time curvature (described by a metric) $g_{\mu\nu}$
- free-falling masses follow geodesics of this metric and ideal clocks measure proper time

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu$$

¹ C. Will, LRR, 9, 2006 ² T. Damour, CQG, 29-184001, 2012

II) Field equations (determination of the metric):

- Einstein Equations: $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$

space-time curvature (metric) ⇔ matter-energy content

II) Field equations (determination of the metric):

- Einstein Equations: $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$

space-time curvature (metric) ⇔ matter-energy content

II) Field equations (determination of the metric):

- Einstein Equations: $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$

space-time curvature (metric) ⇔ matter-energy content

- important effects for space-mission:
 - dynamics ≠ from Newton (ex.: advance of the perihelion)
 - proper time (measured by ideal clocks) \neq coordinate time
 - coordinate time delay for light propagation (Range/Doppler)
 - light deflection (VLBI, astrometry)

Tests of the gravitational dynamics

• How to test the form of the metric/the Einstein field equations ? Two frameworks widely used so far:

Tests of the gravitational dynamics

- How to test the form of the metric/the Einstein field equations ? Two frameworks widely used so far:
- I) Parametrized Post-Newtonian Formalism¹
 - powerful phenomenology making an interface between theoretical development and experiments
 - metric parametrized by 10 dimensionless coefficients
 - γ and β whose values are1 in GR

$$ds^{2} = (1 + 2\phi_{N} + 2\beta\phi_{N}^{2} + \dots)dt^{2} - (1 - 2\gamma\phi_{N} + \dots)d\vec{x}^{2}$$

Tests of the gravitational dynamics

- How to test the form of the metric/the Einstein field equations ? Two frameworks widely used so far:
- I) Parametrized Post-Newtonian Formalism¹
 - powerful phenomenology making an interface between theoretical development and experiments
 - metric parametrized by 10 dimensionless coefficients
 - γ and β whose values are1 in GR

$$ds^{2} = (1 + 2\phi_{N} + 2\beta\phi_{N}^{2} + \dots)dt^{2} - (1 - 2\gamma\phi_{N} + \dots)d\vec{x}^{2}$$

II) Fifth force formalism²

- modification of Newton potential of the form of a Yukawa potential

$$\phi(r) = \frac{GM}{c^2 r} \left(1 + \alpha e^{-r/\lambda} \right)$$

¹ C. Will, LRR, 9, 2006 "Theory and Experiment in Grav. Physics", C. Will, 1993

Constraints on PPN parameters

 Measurement of the Shapiro time delay with Cassini¹

 $\gamma - 1 = (2.1 \pm 2.3) \times 10^{-5}$

¹ B. Bertotti, L. Iess, P. Tortora, Nature, 425/374, 2003

- Planetary ephemerides INPOP² $\beta 1 = (0.2 \pm 2.5) \times 10^{-5}$
- Dynamic of the orbit of the Moon with LLR³

 $\beta - 1 = (2.1 \pm 1.1) \times 10^{-4}$

² A. Verma et al, A & A, 561, A115, 2014
³ J. Williams, S. Turyshev, D. Boggs, IJMP D, 18/1129, 2009

Fifth force formalism

• Search for a deviation of the Newton potential of the form of a Yukawa potential¹ $\phi(r) = \frac{GM}{c^2r} \left(1 + \alpha e^{-r/\lambda}\right)$

 Very good constraints in this formalism
 except at small and large distances

from A.Konopliv et al, Icarus, 211/401, 2011

¹ E.G. Adelberger, Progress in Part. and Nucl. Phys., 62/102, 2009 "The Search for Non-Newtonian gravity", E. Fischbach, C. Talmadge, 1998

ls it enough ?

- Still strong motivations to improve the current tests:
 - tensor-scalar theories "naturally" converging towards GR¹
 - screening theories: modification of GR "hidden" in certain region of space-time: chameleons², symmetron³, Vainshtein mechanism⁴
 - tensor-scalar theories with a decoupling of the scalar field⁵

We have strong motivations to pursue this kind of tests!

¹ T. Damour, K. Nordtvedt, PRD 48/3436 and PRL 70/2217, 1993 ² J. Khoury, A. Weltman, PRD 69/044026 and PRL 93/171104, 2004 ³ K. Hinterbichler, et al, PRD84/103521 and PRL104/231301, 2010

⁴ A. Vainshtein, Phys. Let. B, 39/393, 1972
 ⁵ T. Damour, A. Polyakov, Nucl. Phys. B, 1994
 O. Minazzoli, A. Hees, PRD 88/1504, 2013

Is it necessary to go beyond ?

Post Einsteinian Grav.

- phenomenology
- non local field equation: quantization ?

 $G_{\mu\nu}[k] = \chi_{\mu\nu}^{\ \alpha\beta}[k]T_{\alpha\beta}[k]$

- metric: parametrized by2 arbitrary functions
- M.T. Jaekel, S. Reynaud, CQG, 2005

SME

- phenomenology
- violation of Lorentz symmetry coming from a fundamental level
- action parametrized by a tensor $\overline{s}^{\mu\nu}$

```
Q. Bailey, A. Kostelecky, PRD, 2006
```

Fab Four

- General 2nd order tensorscalar theory

- developed in cosmology: Dark Energy
- weak-field metric:
 parametrized by 4
 parameters

J.P. Bruneton et al, Adv. in Astr., 2012

MOND

- phenomenology

- developed for galactic observations: Dark Matter (galactic rotation curves)
- main effect in the Solar System: External Field Effect $U = \frac{GM}{r} + \frac{Q_2}{2} x^i x^j \left(e_i e_j - \frac{1}{3} \delta_{ij} \right)$

L. Blanchet, J. Novak, MNRAS, 2011

Is it necessary to go beyond ?

Post Einsteinian Grav.

- phenomenology
- non local field equation: quantization ?

 $G_{\mu\nu}[k] = \chi^{\ \alpha\beta}_{\mu\nu}[k]T_{\alpha\beta}[k]$

- metric: parametrized by2 arbitrary functions
- M.T. Jaekel, S. Reynaud, CQG, 2005

SME

- phenomenology
- violation of Lorentz symmetry coming from a fundamental level
- action parametrized by a tensor $\overline{s}^{\mu\nu}$

Q. Bailey, A. Kostelecky, PRD, 2006

Fab Four

- General 2nd order tensorscalar theory

- developed in cosmology: Dark Energy
- weak-field metric:
 parametrized by 4
 parameters

J.P. Bruneton et al, Adv. in Astr., 2012

MOND

- phenomenology

- developed for galactic observations: Dark Matter (galactic rotation curves)

- main effect in the Solar System: External Field Effect $U = \frac{GM}{r} + \frac{Q_2}{2} x^i x^j \left(e_i e_j - \frac{1}{3} \delta_{ij} \right)$

L. Blanchet, J. Novak, MNRAS, 2011

PPN formalism : γ , β , ...

5th force formalism: α , λ

Is it necessary to go beyond ?

Post Einsteinian Grav.	SME		Fab Four
]	

Currently: lack of constraints from Solar System for these theories !

Interesting to consider them and to constrain them using Solar System observations

MOND

- phenomenology

- developed for galactic observations: Dark Matter (galactic rotation curves)

- main effect in the Solar System: External Field Effect $U = \frac{GM}{r} + \frac{Q_2}{2} x^i x^j \left(e_i e_j - \frac{1}{3} \delta_{ij} \right)$

L. Blanchet, J. Novak, MNRAS, 2011

PPN formalism : γ , β , ... 5th force formalism: α , λ

GAIA

- Launched in December 19 2013
- Successor of Hipparcos, it will bring some huge improvements:
 - observation of ~ I billion stars, 3D mapping of our galaxy
 - parallax to 25 μ as and proper motion to 15 μ as/yr
 - colours from low resolution spectro-photometry
 - radial velocities from spectrometer
 - astrometric and photometric measurements for a large number of SSOs, mainly asteroids: high precision on a CCD basis

Asteroids: Gaia

- Use GAIA asteroid observations to test GR: advantage of a large samples of different orbital parameters (300 000 objects)
 - decorrelation of parameters
 - complementary to planetary ephemerides (different bodies, different type of observations, different method to analyze the data)
- accuracy ~ 0.2-0.5 mas

Parameters considered

- local parameters: 6 initial conditions / asteroids (60 000 par.)
- global parameters:
 - Solar Quadrupole moment J_2 .
 - Post-Newtonian Parameter β
 - Sun Lense-Thirring effect: depends on the Sun spin S
 - Violation of the Strong Equivalence Principle (Nordtvedt effect): η
 - Fifth Force formalism: (λ, α)
 - Time variation of G: constant \dot{G}/G
 - Periodic variation of G
 - Standard Model Extension formalism: $\bar{s}^{\mu
 u}$
- 10 000 asteroids with astrometric accuracy of 0.2 mas

PPN formalism and Sun J₂

 highly correlated parameters: one secular effect on orbital dynamics (advance of the perihelion)

$$\left\langle \frac{d\omega}{dt} \right\rangle = (2 + 2\gamma - \beta)n \frac{GM}{c^2 a(1 - e^2)} + \frac{3}{2}n \frac{J_2 R^2}{a^2 (1 - e^2)^2}$$

- various asteroids orbital parameters help to decorrelate
- sensitivity: $\begin{array}{c|c} & J_2 & \beta \\ \hline GAIA & \sigma_{J_2} \sim 10^{-7} & \sigma_{\beta} \sim 7 \times 10^{-4} \\ \hline INPOP & (2.24 \pm 0.15) \times 10^{-7} & (-0.25 \pm 6.7) \times 10^{-5} \end{array}$

INPOP results from A. Fienga et al, arXiv:1409.4932, 2014

- correlation ~ 0.56
- Not as good as planetary ephemerides but: independent analysis, not suffering from the same systematics ⇒ interesting complementary check

Violations of the SEP

- All alternative theories of gravitation violate the Strong Equivalence Principle (SEP)
- The Universality of Free Fall is violated for self-gravitating bodies
- Nordtvedt effect parametrized by η

$$m_p = m_i + \eta \frac{E_{\text{grav}}}{c^2} \qquad \qquad m_i \vec{a} = m_p \vec{\nabla} U$$

see K. Nordtvedt, Phys. Rev., 169, 1014, 1968

• sensitivity: 9x10-4. The only actual constraint comes from LLR

$$\eta = (4.4 \pm 4.5) \times 10^{-4}$$

see J. Williams et al, IJMPD, 18, 1129, 2009

• NO correlation with J_2 or β PPN

The SEP can help to decorelate J_2 and β

- In the PPN framework $\eta = 4\beta - \gamma - 3$

see C. Will, "Theory and Experiment in Gravitational Physics", 1993

• Instead of estimating 3 independent parameters: J_2 , β , η , we can use the above relation to estimate only 2 parameters: J_2 and β

- using the relation between η and β allows to improve the sensitivity but reduce significantly the correlation !
- Similar result expected for planetary ephemerides (η never been considered so far)

Lense-Thirring effect

- Relativistic frame dragging effect produced by the rotation of a body (Sun or Earth)
- Detected with the orbit of LAGEOS spacecraft @ the level of 10% (controversy between L. Iorio and I. Ciufolini) see Ciufolini et al, Nature 431, 958, 2004 L. Iorio et al, APSS 331, 351, 2011
- Influence on a gyroscope detected with Gravity Probe B @ the level of 20%
 See C. Everitt, et al, Phys. Rev. Letters 106, 221101, 2011

Lense-Thirring effect

- Relativistic frame dragging effect produced by the rotation of a body (Sun or Earth)
- Detected with the orbit of LAGEOS spacecraft @ the level of 10% (controversy between L. Iorio and I. Ciufolini) see Ciufolini et al, Nature 431, 958, 2004 L. Iorio et al, APSS 331, 351, 2011
- Influence on a gyroscope detected with Gravity Probe B @ the level of 20%
 See C. Everitt, et al, Phys. Rev. Letters 106, 221101, 2011
- Lense-Thirring impossible to be estimated in planetary ephemerides: completely correlated with J₂ see W. Folkner et al, IPN Prog. Rep. 42, 196, 2014
- Asteroids can decorrelate but Gaia does not have enough accuracy!
- But... not including the LT in the modeling leads to bias:
 - 10^{-8} on the J₂ (i.e. 10% of its value)
 - 5×10^{-5} on the β PPN

Lense-Thirring effect

- Relativistic frame dragging effect produced by the rotation of a body (Sun or Earth)
- Detected with the orbit of LAGEOS spacecraft @ the level of 10% (controversy between L. Iorio and I. Ciufolini) see Ciufolini et al, Nature 431, 958, 2004 L. Iorio et al, APSS 331, 351, 2011
- Influence on a gyroscope detected with Gravity Probe B @ the level of 20%
 See C. Everitt, et al, Phys. Rev. Letters 106, 221101, 2011
- Lense-Thirring impossible to be estimated in planetary ephemerides: completely correlated with J₂ see W. Folkner et al, IPN Prog. Rep. 42, 196, 2014
- Asteroids can decorrelate but Gaia does not have enough accuracy!
- But... not including the LT in the modeling leads to bias:
 - 10^{-8} on the J₂ (i.e. 10% of its value)
 - 5×10^{-5} on the β PPN

Similar conclusions seem to hold for planet. ephem. !

Fifth force

• Use GAIA asteroid observations to constrain the 5th force parameters

correlation with Sun mass to be assessed

Fifth force

• Use GAIA asteroid observations to constrain the 5th force parameters

correlation with Sun mass to be assessed

Standard Model Extension (SME)

- Recent phenomenology developed to consider hypothetical violations of the Lorentz invariance in all sector of physics — violations coming from a more fundamental theory (string theory, loop quantum gravity, non-commutative theory, ...)
- Pure gravity sector¹ depends on 8 parameters $\bar{s}^{\mu\nu}$: Lagrangian based approach (vs PPN based on the metric). The metric does not enter PPN formalism
- Quite few analysis in SME framework: LLR and atom interferometry²

Parameter	Predicted sensitivity	This work
$\bar{s}^{11} - \bar{s}^{22}$	10^{-10}	$(1.3 \pm 0.9) \times 10^{-10}$
\bar{s}^{12}	10^{-11}	$(6.9 \pm 4.5) \times 10^{-11}$
\bar{s}^{02}	10^{-7}	$(-5.2 \pm 4.8) \times 10^{-7}$
\bar{s}^{01}	10^{-7}	$(-0.8 \pm 1.1) \times 10^{-6}$
$\bar{s}_{\Omega_{\oplus}c}$	10^{-7}	$(0.2 \pm 3.9) \times 10^{-7}$
$\bar{s}_{\Omega_{\oplus}^{s}s}$	10^{-7}	$(-1.3 \pm 4.1) \times 10^{-7}$

² J. Battat, J. Chandler, C. Stubbs, PRL, 99/241103, 2007 K. Chung, et al, PRD, 80/016002, 2009

SME and asteroids

- Main advantage: decorrelation of the SME parameters
- Sensitivity on the 8 independent parameters

SME Parameter	sensitivity (σ)
$\bar{s}^{XX} - \bar{s}^{YY}$	9×10^{-12}
$\bar{s}^{XX} + \bar{s}^{YY} - \bar{s}^{ZZ}$	2×10^{-11}
$ar{s}^{XY}$	4×10^{-12}
$ar{s}^{XZ}$	2×10^{-12}
$ar{s}^{YZ}$	4×10^{-12}
$ar{s}^{TX}$	1×10^{-8}
$ar{s}^{TY}$	2×10^{-8}
$ar{s}^{TZ}$	4×10^{-8}

l order of magnitude improvement wrt current constraints

SME and asteroids

- Main advantage: decorrelation of the SME parameters
- Sensitivity on the 8 independent parameters

SME Parameter	sensitivity (σ)
$\bar{s}^{XX} - \bar{s}^{YY}$	9×10^{-12}
$\bar{s}^{XX} + \bar{s}^{YY} - \bar{s}^{ZZ}$	2×10^{-11}
$ar{s}^{XY}$	4×10^{-12}
$ar{s}^{XZ}$	2×10^{-12}
$ar{s}^{YZ}$	4×10^{-12}
$ar{s}^{TX}$	1×10^{-8}
$ar{s}^{TY}$	2×10^{-8}
$ar{s}^{TZ}$	4×10^{-8}

l order of magnitude improvement wrt current constraints

• Correlations between parameters

	$\bar{s}^{XX} - \bar{s}^{YY}$	$\bar{s}^{XX} + \bar{s}^{YY} - \bar{s}^{ZZ}$	\bar{s}^{XY}	\bar{s}^{XZ}	\bar{s}^{YZ}	\bar{s}^{TX}	\bar{s}^{TY}	\bar{s}^{TZ}			
$\bar{s}^{XX} - \bar{s}^{YY}$	1								·		
$\bar{s}^{XX} + \bar{s}^{YY} - \bar{s}^{ZZ}$	0.28	1					reas	onn	able	correl	ations
\bar{s}^{XY}	-0.06	-0.01	1								
\bar{s}^{XZ}	-0.17	-0.06	0.46	1							
$ar{s}^{YZ}$	-0.16	0.71	0.01	0.01	1						
\bar{s}^{TX}	10^{-3}	-0.01	-0.01	10^{-3}	-0.01	1					
$ar{s}^{TY}$	0.03	0.09	0.01	-0.01	0.02	-0.16	1				
\bar{s}^{TZ}	-0.02	-0.1	-0.01	0.01	-0.02	0.13	-0.67	1			

SME and asteroids

- First possibility to decorrelate all parameters
- Analysis done including the Sun J_2 : similar results ; J_2 decorrelates as well
- Improvement by ~ I order of magnitude wrt current constraints
- Need to extend the study to include "gravity-matter SME coupling" (more parameters that include violation of the equivalence principle)

Very promising results expected

Time variation of G

- A lot of alternative theories of gravitation induce a time variation of G (tensor-scalar theory for example)
- Constraining a linear variation in G is standard: \dot{G}/G
- Sensitivity for GAIA: 10⁻¹² per year
- Current constraint: $\dot{G}/G = (0.5 \pm 1.6) \times 10^{-13} {\rm yr}^{-1}$

INPOP results from A. Fienga et al, arXiv:1409.4932, 2014

$$\dot{G}/G = (0.1 \pm 1.6) \times 10^{-13} \mathrm{yr}^{-1}$$

DE results from A. Konopliv et al, Icarus 211, 401, 2011

Periodic variation of G

Very recent temporal analysis of G measurements seem to indicate a periodic variation

$$G(t) = \bar{G} + A\sin\left(2\pi\frac{t-t_0}{T}\right)$$

- first estimation by Anderson et al
- more careful analysis by Schlamminger et al S. Schlamminger et al, arXiv:1505.01774, 2015

J. Anderson, et al, Eur. Phys. Letters 110, 10002, 2015

Fit function	T	$A \times 10^{15}$	$\bar{G} \times 10^{11}$	Maximum
	(years)	$(m^3 kg^{-1} s^{-2})$	$(m^3 kg^{-1} s^{-2})$	
from Fig. 1 in [1]	5.93	16.1	6.67388	09/13/01
sine, fixed T	5.93	10.7	6.67359	03/14/01
sine, T free	0.77	11.2	6.67358	02/21/00
sine, T free	6.17	11.0	6.67354	02/13/01
straight line	n.a.	n.a.	6.67413	n.a.

- Gaia sensitivity around ~ 10^{-20} for the amplitude, no correlation with \bullet Sun J_2 .
- Planetary ephemerides can be used to constrain severely this effect

Conclusion

- Testing GR in the solar system is very challenging but very important:
 - search for small deviations (smaller than present PPN accuracy)
 - search for deviations in extended frameworks (SME is one of them)
- Asteroids observations with GAIA offer nice opportunities to probe orbital dynamics
 - large number of orbital parameters: nice to deal with correlations
 - different and independent constraints from planetary ephemerides
- Sensitivity assessed for different alternative gravity framework: PPN parameters, fifth force, SME, variation of G, ...
- In the longer term, combining GAIA observations with UCLA radar data may improve the results: complementary observations currently under investigation
 see J.L. Margot and J. Giorgini, proceedings of IAU symp. 261, 2010

BACK UP SLIDES

I) Equivalence Principle: the future...

- theoretical motivations to improve these: string theory, Kaluza-Klein, theories with variable fundamental constants ("principle of absence of absolute structure"), "anthropic principle", ...

for a review, see T. Damour, CQG, 29-184001, 2012

- Universality of Free Fall:
 - Microscope: launch in April 2016; test at 10⁻¹⁵ see G. Metris's talk
 - Galileo Galilei: Italian proposal; test at 10⁻¹⁷
 - STE-QUEST: ESA proposal; quantum test at the level of 10⁻¹⁵
- Local Position Invariance gravitational redshift:
 - ACES: launch in 2016; test at 10⁻⁶

- Galileo 5 and 6 GNSS satellites: failed launched eccentric orbit appropriate for redshift tests (comparison of onboard clocks to clocks on Earth). Full sensitivity study (stochastic noise and systematics): sensitivity at 2x10⁻⁵ with one year of data