The Time Transfer Function as a tool for modeling light propagation

A. Hees - Rhodes University, South Africa
S. Bertone - University of Bern, Switzerland
C. Le Poncin-Lafitte and P.Teyssandier - LNE-SYRTE, Paris Obs.

SF2A, GRAM session 2015 02/06/2015

Accuracy of observations improves

- BepiColombo, JUNO, JUICE (3GM and PRIDE), ... : main objective: internal structure of planets/satellites. Radioscience @ the level of cm for the range and $\mu \mathrm{m} / \mathrm{s}$ for the Doppler
- GAIA: astrometric observations @ the level of $10 \mu \mathrm{as}$
- GRAVITY: astrometric observations around our galactic center @ the level of 10μ as
- AGP/GAME: astrometric test of GR at the level of μ as (around the Sun)
- THEIA/NEAT: astrometric observations (exoplanets) at the level of ~ 50 nas- 0.1μ as

Accuracy of observations improves

- BepiColombo, JUNO, JUICE (3GM and PRIDE), ... : main objective: internal structure of planets/satellites. Radioscience @ the level of cm for the range and $\mu \mathrm{m} / \mathrm{s}$ for the Doppler
- GAIA: astrometric observations @ the level of $10 \mu \mathrm{as}$
- GRAVITY: astrometric observations around our galactic center @ the level of $10 \mu \mathrm{as}$
- AGP/GAME: astrometric test of GR at the level of μ as (around the Sun)
- THEIA/NEAT: astrometric observations (exoplanets) at the level of ~ 50 nas- $0.1 \mu \mathrm{as}$

Similar improvement in the theoretical modeling needed

Light propagation is crucial in the

modelling of Sol. Sys. observations

I) Range observable

- Difference in proper time

$$
\text { Range }=c\left(\tau_{B}-\tau_{A}\right)
$$

- Depends on the difference in coord. time (amongst other parameters)

$$
t_{B}-t_{A}
$$

Light propagation is crucial in the modelling of Sol. Sys. observations

2) Doppler observable

- Ratio of proper frequency $D=\frac{\nu_{B}}{\nu_{A}}=\left(\frac{d \tau}{d t}\right)_{A}\left(\frac{d \tau}{d t}\right)_{B}^{-1} \frac{k_{0}^{B}}{k_{0}^{A}} \frac{1+\beta_{B}^{i} \hat{k}_{i}^{B}}{1+\beta_{A}^{i} \hat{k}_{i}^{A}}$
with $\beta^{i}=v^{i} / c$ and

$$
\hat{k}_{i}=\frac{k_{i}}{k_{0}}
$$

- Wave vector at emission and reception needed

Light propagation is crucial in the

modelling of Sol. Sys. observations

3) Astrometric observable \&VLBI

- Direction of observation of the light ray in a local reference system (or tetrad)

$$
n^{\langle i\rangle}=-\frac{E_{\langle i\rangle}^{0}+E_{\langle i\rangle}^{j} \hat{k}_{j}^{B}}{E_{\langle 0\rangle}^{0}+E_{\langle 0\rangle}^{j} \hat{k}_{j}^{B}}
$$

- Wave vector at reception needed

How to determine the light propagation?

- At the geometric optics approximation: photons follow null geodesics

$$
\frac{d k^{\mu}}{d \lambda}+\Gamma_{\alpha \beta}^{\mu} k^{\alpha} k^{\beta}=0 \quad k^{\mu} k_{\mu}=0
$$

with $k^{\mu}=\frac{d x^{\mu}}{d \lambda}$ the tangent vector

Methods to solve the null geodesic eqs.

- Full numerical integration of the null geodesic eqs. with a shooting method

Methods to solve the null geodesic eqs.

- Full numerical integration of the null geodesic eqs. with a shooting method
- Exact analytical solution for some metrics: Schwarzschild and Kerr (solution with Jacobian/Weierstrass elliptic functions)
see for example: de Jans, Mem. de l'Ac. Roy. de Bel., I 922
B. Carter, Com. in Math. Phys. I0, 280, I 968
A. Cadez, U. Kostic, PRD 72, I 04024, 2005
A. Cadez, et al, New Astr. 3, 647, I 998

Methods to solve the null geodesic eqs.

- Full numerical integration of the null geodesic eqs. with a shooting method
- Exact analytical solution for some metrics: Schwarzschild and Kerr (solution with Jacobian/Weierstrass elliptic functions)
- Analytical solutions for low gravitational field:
- I pM Schwarzschild metric
- moving monopoles at IpM order see S. Kopeikin, G. Schâffer, PRD 60, 124002, 1999
S. Klioner, A \& A, 404, 783, 2003
- static extended bodies with multipolar expansion at IpM
see S. Kopeikin, J. of Math. Phys., 38, 2587
- 2 pM Schwarzschild metric
see G. Richter, R. Matzner, PRD 28, 3007, 1983
S. Klioner, S. Zschocke, CQG 27, 0750I5, 2010

Methods to solve the null geodesic eqs.

- Full numerical integration of the null geodesic eqs. with a shooting method
- Exact analytical solution for some metrics: Schwarzschild and Kerr (solution with Jacobian/Weierstrass elliptic functions)
- Analytical solutions for low gravitational field:
- I pM Schwarzschild metric
- moving monopoles at IpM order see S. Kopeikin, G. Schäffer, PRD 60, 124002, 1999
S. Klioner, A \& A, 404, 783, 2003
- static extended bodies with multipolar expansion at IpM
see S. Kopeikin, J. of Math. Phys., 38, 2587
- 2 pM Schwarzschild metric
see G. Richter, R. Matzner, PRD 28, 3007, 1983
S. Klioner, S. Zschocke, CQG 27, 0750I5, 2010
- Use of the eikonal equation:
- perturbative solution for spherically symmetric space-time
- The (reception) Time Transfer Function - TTF - is defined by

$$
t_{B}-t_{A}=\mathcal{T}_{r}\left(\boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right)
$$

- The TTF is solution of an eikonal equation well adapted to a perturbative expansion
- The (reception) Time Transfer Function - TTF - is defined by

$$
t_{B}-t_{A}=\mathcal{T}_{r}\left(\boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right)
$$

- The TTF is solution of an eikonal equation well adapted to a perturbative expansion
- The derivatives of the TTF are of crucial interest since

$$
\hat{k}_{i}^{A}=c \frac{\partial \mathcal{T}_{r}}{\partial x_{A}^{i}} \quad \quad \hat{k}_{i}^{B}=-c \frac{\partial \mathcal{T}_{r}}{\partial x_{B}^{i}}\left[1-\frac{\partial \mathcal{T}_{r}}{\partial t_{B}}\right]^{-1} \quad \frac{k_{0}^{B}}{k_{0}^{A}}=1-\frac{\partial \mathcal{T}_{r}}{\partial t_{B}}
$$

Range, Doppler, astrometric observables can be written in terms of the TTF and its derivatives

Post-Minkowskian expansion of the TTF

- A pM expansion of the TTF: $\mathcal{T}_{r}\left(\boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right)=\frac{R_{A B}}{c}+\sum_{n>1} \mathcal{T}_{r}^{(n)}$
- Computation with an iterative procedure involving integrations over a straight line between the emitter and the spatial position of the receiver!
- Example at I pM: $\mathcal{T}_{r}^{(1)}=\frac{R_{A B}}{2 c} \int_{0}^{1}\left[g_{(1)}^{00}-2 N_{A B}^{i} g_{(1)}^{0 i}+N_{A B}^{i} N_{A B}^{j} g_{(1)}^{i j}\right]_{z^{\alpha}(\lambda)} d \lambda$ with $z^{\alpha}(\lambda)$ the straight Mink. null path between em. and rec.
- Main advantages:
- analytical computations relatively easy
- very well adapted to numerical evaluation

Analytical results in Schwarzschild space-time

- A "simplified" iterative method has been developed for static spherically symmetric geometry
$d s^{2}=\left(1-2 \frac{m}{r}+2 \beta \frac{m^{2}}{r^{2}}-\frac{3}{2} \beta_{3} \frac{m^{3}}{r^{3}}+\ldots\right) d t^{2}-\left(1+2 \gamma \frac{m}{r}+\frac{3}{2} \epsilon \frac{m^{2}}{r^{2}}+\frac{1}{2} \gamma_{3} \frac{m^{3}}{r^{3}}+\ldots\right) d \boldsymbol{x}^{2}$
- In GR: $\gamma=\beta=\epsilon=\beta_{3}=\gamma_{3}=1$
- A pM expansion of the TTF: $\mathcal{T}=\frac{R_{A B}}{c}+\sum_{n>1} \mathcal{T}^{(n)}$ and the corresponding derivatives have been computed up to the 3rd pM order

Analytical results in Schwarzschild space-time

- A pM expansion of the TTF: $\mathcal{T}=\frac{R_{A B}}{c}+\sum_{n>1} \mathcal{T}^{(n)}$

$$
\begin{aligned}
\mathcal{T}^{(1)} & =\frac{(1+\gamma) m}{c} \ln \frac{r_{A}+r_{B}+\left|\boldsymbol{x}_{B}-\boldsymbol{x}_{A}\right|}{r_{A}+r_{B}-\left|\boldsymbol{x}_{B}-\boldsymbol{x}_{A}\right|}
\end{aligned} \quad \text { see E.Shapiro, PRL 13, 26, 789, 1964 }
$$

see B. Linet and P.Teyssandier, CQG 30, I75008, 2014
with $\kappa=2+2 \gamma-\beta+\frac{3}{4} \epsilon$

$$
\kappa_{3}=2 \kappa-2 \beta(1+\gamma)+\frac{1}{4}\left(3 \beta_{3}+\gamma_{3}\right)
$$

and $\quad n_{A / B}=\frac{x_{A / B}}{r_{A / B}}$

Is it necessary to go to the 3rd order?

- In a conjunction geometry, at each order n, there are enhanced terms proportional to $(1+\gamma)^{n}$
- Ex. with Earth-BepiColombo range (accuracy ~ 10 cm) $\Rightarrow 2 p M$ term needed

- Ex. with SAGAS: link between spacecraft in the outer Solar System to measure γ at 0^{-8} \Rightarrow accuracy at the mm level
$\Rightarrow 3 p M$ term needed

r_{c} / R_{\odot}	$c_{\mathcal{T}_{\text {enh }}^{(2)}}$	$c_{\kappa}^{(2)}$	$\mathcal{C}_{\text {enh }}^{(3)}$
1	-5 m	37 cm	10 cm
2	-1.3 m	18 cm	0.6 mm
5	-21 cm	7 mm	$15 \mu \mathrm{~m}$

Is it necessary to go to the 3rd order?

- In a conjunction geometry, at each order n, there are enhanced terms proportional to $(1+\gamma)^{n}$
- Ex. with light deflection for Sun grazing rays:AGP space mission (old GAME). Expected accuracy: μ as
$\Rightarrow 3 p M$ term needed

see A. Hees, S. Bertone, C. Le Poncin-Lafitte, PRD 89, 064045, 2014
P. Teyssandier, B. Linet, proceedings of JSR 20I3, arXiv:I3|2.35IO

Analytical result around axisymmetric bodies

- Influence of all the multipole moments J_{n} from the grav. potential
see C. Le Poncin-Lafitte, P.Teyssandier, PRD 77, 044029, 2008 for a computation with the TTF or S. Kopeikin, J. of Math. Physics 38, 2587, 1997 for another approach
- Influence of Jupiter J_{2} on the JUNO Doppler ($1 \mu \mathrm{~m} / \mathrm{s}$ accuracy) and for GAIA ($10 \mu \mathrm{as} \mathrm{acc)}$.

JUNO

- terms important for the data analysis for these missions

What happens if the body is moving ?

- At first pM order, the TTF for uniformly moving bodies can easily be derived from the TTF generated by a static body

TTF in the

moving case
with $\boldsymbol{\beta}=\boldsymbol{v} / c, \quad \gamma=\left(1-\beta^{2}\right)^{-1 / 2}$
and \boldsymbol{R}_{X} depends on $\boldsymbol{x}_{X}, \boldsymbol{\beta}$

- All the analytical results computed for a static source can be extended in the case of a uniformly moving source

Time Transfer around a moving body

- moving monopole:
- using the previous result:

$$
\Delta_{M}\left(\boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right)=2 \frac{G M_{p}}{c^{2}} \gamma_{p}\left(1-\boldsymbol{N}_{A B} \cdot \boldsymbol{\beta}_{p}\right) \ln \frac{\left|\boldsymbol{R}_{p A}+\gamma_{p} \boldsymbol{\beta}_{p} R_{A B}\right|+R_{p B}+\gamma_{p} R_{A B}\left(1-\boldsymbol{\beta}_{p} \cdot \boldsymbol{N}_{A B}\right)}{\left|\boldsymbol{R}_{p A}+\gamma_{p} \boldsymbol{\beta}_{p} R_{A B}\right|+R_{p B}-\gamma_{p} R_{A B}\left(1-\boldsymbol{\beta}_{p} \cdot \boldsymbol{N}_{A B}\right)}
$$

see see A. Hees, et al, PRD 08, 084020, 2014
S. Bertone et al, CQG 3I, 01502I, 2014 for a pN expansion

- also determined by other methods
see S. Kopeikin, G. Schäffer, PRD 60, I24002, I999
S. Klioner, A \& A, 404, 783, 2003

Time Transfer around a moving body

- moving monopole:
- using the previous result:

$$
\begin{array}{r}
\Delta_{M}\left(\boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right)=2 \frac{G M_{p}}{c^{2}} \gamma_{p}\left(1-\boldsymbol{N}_{A B} \cdot \boldsymbol{\beta}_{p}\right) \ln \frac{\left|\boldsymbol{R}_{p A}+\gamma_{p} \boldsymbol{\beta}_{p} R_{A B}\right|+R_{p B}+\gamma_{p} R_{A B}\left(1-\boldsymbol{\beta}_{p} \cdot \boldsymbol{N}_{A B}\right)}{\left|\boldsymbol{R}_{p A}+\gamma_{p} \boldsymbol{\beta}_{p} R_{A B}\right|+R_{p B}-\gamma_{p} R_{A B}\left(1-\boldsymbol{\beta}_{p} \cdot \boldsymbol{N}_{A B}\right)} \\
\text { see see A. Hees, et al, PRD 08, 084020, 2014 } \\
\text { S. Bertone et al, CQG 3I,01502I, 2014 for a pN expansion }
\end{array}
$$

- also determined by other methods
see S. Kopeikin, G. Schäffer, PRD 60, I24002, I 999
S. Klioner, A \& A, 404, 783, 2003
- moving quadrupole: - using the TTF see A. Hees, et al, PRD 08,084020, 2014
- with another method
see S. Kopeikin, V. Makarov, PRD, 75, 062002, 2007

Time Transfer around a moving body

- moving monopole:
- using the previous result:

$$
\begin{array}{r}
\Delta_{M}\left(\boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right)=2 \frac{G M_{p}}{c^{2}} \gamma_{p}\left(1-\boldsymbol{N}_{A B} \cdot \boldsymbol{\beta}_{p}\right) \ln \frac{\left|\boldsymbol{R}_{p A}+\gamma_{p} \boldsymbol{\beta}_{p} R_{A B}\right|+R_{p B}+\gamma_{p} R_{A B}\left(1-\boldsymbol{\beta}_{p} \cdot \boldsymbol{N}_{A B}\right)}{\left|\boldsymbol{R}_{p A}+\gamma_{p} \boldsymbol{\beta}_{p} R_{A B}\right|+R_{p B}-\gamma_{p} R_{A B}\left(1-\boldsymbol{\beta}_{p} \cdot \boldsymbol{N}_{A B}\right)} \\
\text { see see A. Hees, et al, PRD 08, 084020, 2014 } \\
\text { S. Bertone et al, CQG 3I,01502I, 2014 for a pN expansion }
\end{array}
$$

- also determined by other methods
see S. Kopeikin, G. Schäffer, PRD 60, I24002, I 999
S. Klioner, A \& A, 404, 783, 2003
- moving quadrupole: - using the TTF see A. Hees, et al, PRD 08, 084020, 2014
- with another method
see S. Kopeikin, V. Makarov, PRD, 75, 062002, 2007
- moving axisymmetric bodies:

Time Transfer around a moving body

- moving monopole:
- using the previous result:

$$
\begin{array}{r}
\Delta_{M}\left(\boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right)=2 \frac{G M_{p}}{c^{2}} \gamma_{p}\left(1-\boldsymbol{N}_{A B} \cdot \boldsymbol{\beta}_{p}\right) \ln \frac{\left|\boldsymbol{R}_{p A}+\gamma_{p} \boldsymbol{\beta}_{p} R_{A B}\right|+R_{p B}+\gamma_{p} R_{A B}\left(1-\boldsymbol{\beta}_{p} \cdot \boldsymbol{N}_{A B}\right)}{\left|\boldsymbol{R}_{p A}+\gamma_{p} \boldsymbol{\beta}_{p} R_{A B}\right|+R_{p B}-\gamma_{p} R_{A B}\left(1-\boldsymbol{\beta}_{p} \cdot \boldsymbol{N}_{A B}\right)} \\
\text { see see A. Hees, et al, PRD 08, 084020, 2014 } \\
\text { S. Bertone et al, CQG 3I, 01502I, 2014 for a pN expansion }
\end{array}
$$

- also determined by other methods
see S. Kopeikin, G. Schäffer, PRD 60, I24002, I999
S. Klioner, A \& A, 404, 783, 2003
- moving quadrupole: - using the TTF see A. Hees, et al, PRD 08, 084020, 2014
- with another method

$$
\text { see S. Kopeikin, V. Makarov, PRD, 75, 062002, } 2007
$$

- moving axisymmetric bodies:
- moving body with arbitrary static multipoles: slow velocity app.

Time Transfer around a moving body

- moving monopole:
- using the previous result:

$$
\begin{array}{r}
\Delta_{M}\left(\boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right)=2 \frac{G M_{p}}{c^{2}} \gamma_{p}\left(1-\boldsymbol{N}_{A B} \cdot \boldsymbol{\beta}_{p}\right) \ln \frac{\left|\boldsymbol{R}_{p A}+\gamma_{p} \boldsymbol{\beta}_{p} R_{A B}\right|+R_{p B}+\gamma_{p} R_{A B}\left(1-\boldsymbol{\beta}_{p} \cdot \boldsymbol{N}_{A B}\right)}{\left|\boldsymbol{R}_{p A}+\gamma_{p} \boldsymbol{\beta}_{p} R_{A B}\right|+R_{p B}-\gamma_{p} R_{A B}\left(1-\boldsymbol{\beta}_{p} \cdot \boldsymbol{N}_{A B}\right)} \\
\text { see see A. Hees, et al, PRD 08, 084020, 2014 } \\
\text { S. Bertone et al, CQG 3I,01502I, 2014 for a pN expansion }
\end{array}
$$

- also determined by other methods
see S. Kopeikin, G. Schäffer, PRD 60, I24002, I999
S. Klioner, A \& A, 404, 783, 2003
- moving quadrupole: - using the TTF see A. Hees, et al, PRD 08,084020, 2014
- with another method
see S. Kopeikin, V. Makarov, PRD, 75, 062002, 2007
- moving axisymmetric bodies:
- moving body with arbitrary static multipoles: slow velocity app.
see M. Soffel,W.-B. Han, arXiv:|409.3743
- arbitrarily moving point masses: numerical expression

Ex.: motion of Jupiter

- Influence of Jupiter velocity on the JUNO Doppler ($1 \mu \mathrm{~m} / \mathrm{s}$ accuracy) and for GAIA (IO $\mu \mathrm{as}$ acc.)

GAIA/VLBI

- depend highly on the orbit geometry: conjunction and $\boldsymbol{\beta} \cdot \boldsymbol{N}_{A B}$
- In particular: should be reassessed for JUICE orbit

Numerical evaluation of the TTF

- Iterative procedure involving integrals over a straight line: appropriate for numerical evaluation

Numerical evaluation of the TTF

- Iterative procedure involving integrals over a straight line: appropriate for numerical evaluation
- At IpM order: a simple integral to evaluate

$$
\begin{aligned}
\mathcal{T}^{(1)} & =\int_{0}^{1} m\left[z^{\alpha}(\mu) ; g_{\alpha \beta}^{(1)}, \boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right] d \mu \\
\frac{\partial \mathcal{T}^{(1)}}{\partial x_{A / B}^{i}} & =\int_{0}^{1} m_{A / B}\left[z^{\alpha}(\mu) ; g_{\alpha \beta}^{(1)}, g_{\alpha \beta, \gamma}^{(1)}, \boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right] d \mu
\end{aligned}
$$

Numerical evaluation of the TTF

- Iterative procedure involving integrals over a straight line: appropriate for numerical evaluation
- At IpM order: a simple integral to evaluate

$$
\begin{aligned}
\mathcal{T}^{(1)} & =\int_{0}^{1} m\left[z^{\alpha}(\mu) ; g_{\alpha \beta}^{(1)}, \boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right] d \mu \\
\frac{\partial \mathcal{T}^{(1)}}{\partial x_{A / B}^{i}} & =\int_{0}^{1} m_{A / B}\left[z^{\alpha}(\mu) ; g_{\alpha \beta}^{(1)}, g_{\alpha \beta, \gamma}^{(1)}, \boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right] d \mu
\end{aligned}
$$

- At $2 p M$ order: a double integral to evaluate

$$
\begin{aligned}
\mathcal{T}^{(2)} & =\int_{0}^{1} \int_{0}^{1} n\left[z^{\alpha}(\mu \lambda) ; g_{\alpha \beta}^{(2)}, g_{\alpha \beta}^{(1)}, g_{\alpha \beta, \gamma}^{(1)}, \boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right] d \lambda d \mu \\
\frac{\partial \mathcal{T}^{(2)}}{\partial x_{A / B}^{i}} & =\int_{0}^{1} \int_{0}^{1} n_{A / B}\left[z^{\alpha}(\mu \lambda) ; g_{\alpha \beta}^{(2)}, g_{\alpha \beta, \gamma}^{(2)}, g_{\alpha \beta}^{(1)}, g_{\alpha \beta, \gamma}^{(1)}, g_{\alpha \beta, \gamma \delta}^{(1)}, \boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right] d \lambda d \mu
\end{aligned}
$$

Numerical evaluation of the TTF

- Iterative procedure involving integrals over a straight line: appropriate for numerical evaluation
- At IpM order: a simple integral to evaluate

$$
\begin{aligned}
\mathcal{T}^{(1)} & =\int_{0}^{1} m\left[z^{\alpha}(\mu) ; g_{\alpha \beta}^{(1)}, \boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right] d \mu \\
\frac{\partial \mathcal{T}^{(1)}}{\partial x_{A / B}^{i}} & =\int_{0}^{1} m_{A / B}\left[z^{\alpha}(\mu) ; g_{\alpha \beta}^{(1)}, g_{\alpha \beta, \gamma}^{(1)}, \boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right] d \mu
\end{aligned}
$$

- At $2 p \mathrm{M}$ order: a double integral to evaluate

$$
\begin{aligned}
\mathcal{T}^{(2)} & =\int_{0}^{1} \int_{0}^{1} n\left[z^{\alpha}(\mu \lambda) ; g_{\alpha \beta}^{(2)}, g_{\alpha \beta}^{(1)}, g_{\alpha \beta, \gamma}^{(1)}, \boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right] d \lambda d \mu \\
\frac{\partial \mathcal{T}^{(2)}}{\partial x_{A / B}^{i}} & =\int_{0}^{1} \int_{0}^{1} n_{A / B}\left[z^{\alpha}(\mu \lambda) ; g_{\alpha \beta}^{(2)}, g_{\alpha \beta, \gamma}^{(2)}, g_{\alpha \beta}^{(1)}, g_{\alpha \beta, \gamma}^{(1)}, g_{\alpha \beta, \gamma \delta}^{(1)}, \boldsymbol{x}_{A}, t_{B}, \boldsymbol{x}_{B}\right] d \lambda d \mu
\end{aligned}
$$

- Numerically efficient ; useful when no analytical solution can be found

Numerical evaluation of the TTF

- Numerical evaluation appropriate to evaluate effects due to alternative theories of gravitation
- Example: Doppler for 30 days of Cassini tracking between Jupiter and Saturn (" γ experiment")
- Effect of the γ PPN and of Standard Model Extension STY on Cassini Doppler

Simulations of observations directly from metric

- New tool that performs Range/Doppler/Astrometric simulations from a specific space-time metric (orbit integration, clock model, light propagation, tetrad propagation,...) and fits of the orbital initial conditions in GR
- Identification of incompressible signals due to the alternative theory: order of magnitude and signature that can eventually be observed in residuals of real data analysis
- Very flexible approach: easy to change the gravitation theory (the only thing to change: the expression of the metric)
- What are the effects of alternative theories of gravity on space observations?

Simulations of Messenger in SME

- SME: consider violations of the Lorentz symmetry
- metric parametrizing a violation of Lorentz symmetry in the gravitational sector depends ${ }^{1}$ on $\bar{S}_{\mu \nu}$: does not enter PPN of fifth force formalisms
- Simulations of two years of Earth-Messenger-Earth Range and Doppler link

- Numerical identification of the linear combinations of SME parameters whose observations depend on

$$
\begin{aligned}
& \bar{s}_{A}=\bar{s}_{X X}-0.72 \bar{s}_{Y Y}-0.28 \bar{s}_{Z Z} \\
& \bar{s}_{T X} \\
& \bar{s}_{B}=\bar{s}_{T Y}+0.53 \bar{s}_{T Z} \\
& \bar{s}_{C}=\bar{s}_{X Y}+2.954 \bar{s}_{X Z}-0.26 \bar{s}_{Y Z}
\end{aligned}
$$

Incompressible signature of SME on Messenger

- Signatures that would be observed in residuals of data analysis if SME is the real theory of gravitation but if data are analyzed in GR

- Can we identify such signatures in residuals of real data analysis ? Can we constrain these parameters ?

Summary of results for SME

- Linear combinations involved in the situations considered determined ${ }^{1}$
- Expected sensitivities ${ }^{1}$:

Messenger

Par.	Uncertainties
\bar{s}_{A}	1.1×10^{-10}
$\bar{s}_{T X}$	3.1×10^{-8}
\bar{s}_{B}	1.4×10^{-8}
\bar{s}_{C}	3.2×10^{-11}

Cassini (Saturn)

Par.	Uncertainties
\bar{s}_{F}	8.6×10^{-11}
$\bar{s}_{T X}$	1.2×10^{-8}
\bar{s}_{G}	1.5×10^{-8}
\bar{s}_{H}	2.3×10^{-11}

- To be compared with previous results obtained with LLR+interferometry ${ }^{2}$

${ }^{2}$ J. Battat, J. Chandler, C. Stubbs, PRL, 99/241103, 2007 K. Chung, et al, PRD, 80/016002, 2009

Conclusion

- The TTF is a very nice tool to compute the time transfer, the Doppler and astrometric (VLBI) observations
- Analytical results found (so far):
- time transfer in Schwarzschild space-time at I, 2, 3 pM order
see B. Linet and P.Teyssandier, CQG 30, I75008, 2014
- time transfer around static axisymmetric body
see C. Le Poncin-Lafitte, P.Teyssandier, PRD 77, 044029, 2008
- time transfer around a slowly moving monopole
see S. Bertone et al, CQG 3I, 01502I, 2014
- time transfer around uniformly moving axisymmetric body
see A. Hees, et al, PRD 08, 084020, 20|4
- Very efficient from a numerical point of view
see A. Hees, et al, PRD 89, 064045, 20।4
- Useful to assess order of magnitude of different GR effects but also effects from alternative theories of gravitation

