Gravitational self-force correction to the innermost stable circular orbit of a Kerr black hole

Alexandre Le Tiec

Laboratoire Univers et Théories Observatoire de Paris / CNRS

Collaborators: L. Barack, S. Dolan, S. Isoyama, H. Nakano, A. Shah, T. Tanaka, N. Warburton

CQG **31** (2014) 097001, arXiv:1311.3836 [gr-qc] PRL **113** (2014) 161101, arXiv:1404.6133 [gr-qc]

Promising sources of gravitational waves

- Binary neutron stars $(2 imes \sim 1.4 M_{\odot})$
- Stellar-mass black hole binaries (2× $\sim 10 M_{\odot}$)
- Supermassive black hole binaries $(2 imes \sim 10^6 M_{\odot})$
- Extreme mass ratio inspirals ($\sim 10 M_{\odot} + \sim 10^6 M_{\odot})$

Journées SF2A 2015

Need for accurate template waveforms

If the expected signal is known in advance then n(t) can be filtered and h(t) recovered by matched filtering \longrightarrow template waveforms

Need for accurate template waveforms

If the expected signal is known in advance then n(t) can be filtered and h(t) recovered by matched filtering \longrightarrow template waveforms

Alexandre Le Tiec

Extreme mass ratio inspirals (EMRIs)

Gravitational self-force (GSF)

- Dissipative component \longleftrightarrow gravitational waves
- Conservative component \longrightarrow some secular effects

Kerr ISCO frequency vs black hole spin

[Bardeen et al., ApJ 1972]

Kerr ISCO frequency vs black hole spin

[Bardeen et al., ApJ 1972]

Spins of supermassive black holes

[Reynolds, CQG 2013]

Geodesic motion of a test mass in Kerr

Hamiltonian formulation

Hamiltonian of a *test mass m* in the Kerr geometry g_{ab} :

$$H(x,p)=\frac{1}{2m}g^{ab}(x)p_ap_b$$

Constants of the motion

- Rest mass m
- Energy $E = -t^a p_a$
- Ang. momen. $L = \phi^a p_a$
- Carter constant $Q = K^{ab} p_a p_b$

Hamiltonian first law of mechanics

[Le Tiec, CQG 2014]

- The Hamilton-Jacobi equation is completely separable
- Perform a canonical transformation (x^a, p_a) → (q^α, J_α) to action-angle variables:

$$\frac{\mathrm{d}q^{\alpha}}{\mathrm{d}t} = \frac{\partial H}{\partial J_{\alpha}} \equiv \Omega_{\alpha} , \quad \frac{\mathrm{d}J_{\alpha}}{\mathrm{d}t} = -\frac{\partial H}{\partial q^{\alpha}} = 0$$

 Varying H(J_α) and using Hamilton's equations yields a first law of mechanics:

$$\delta \mathbf{E} = \Omega_{\varphi} \, \delta \mathbf{L} + \Omega_r \, \delta \mathbf{J}_r + \Omega_{\theta} \, \delta \mathbf{J}_{\theta} + \langle \mathbf{z} \rangle \, \delta \mathbf{m}$$

Inclusion of the conservative self-force

[Isoyama et al., in preparation]

• Geodesic motion of a *self-gravitating mass m* in perturbed geometry $g_{ab} + h_{ab}^{reg}$ derives from perturbed Hamiltonian

$$\mathcal{H}[x, p; \gamma] = H(x, p) + H_{\text{int}}[x, p; \gamma]$$

The first law of mechanics can be extended up to O(q):

$$\delta \mathcal{E} = \Omega_{\varphi} \, \delta \mathcal{L} + \Omega_r \, \delta \mathcal{J}_r + \Omega_\theta \, \delta \mathcal{J}_\theta + \langle \mathbf{z} \rangle \, \delta \mathbf{m}$$

The actions J_α, frequencies Ω_α, and average redshift (z) include conservative self-force corrections from H_{int}

Minimum energy circular orbit (MECO)

• For *circular equatorial* orbits, the first law reduces to

$$\delta \mathcal{E} = \Omega \, \delta \mathcal{L} + \mathbf{z} \, \delta \mathbf{m}$$

• The MECO is the circular orbit whose frequency obeys

$$\mathcal{E}'(\Omega_{\mathrm{meco}}) = 0 \quad \Longleftrightarrow \quad \tilde{z}''(\Omega_{\mathrm{meco}}) = 0$$

• Since $\Omega_{meco} = \Omega_{isco}$ for Hamiltonian systems such as ours, the ISCO frequency obeys

$$ilde{z}''(\Omega_{
m isco}) = 0\,, \quad {
m where} \quad ilde{z} \equiv z_{
m kerr} + rac{q}{2}\,z_{
m gsf}$$

Frequency shift of the Kerr ISCO

[Isoyama et al., PRL 2014]

• The orbital frequency of the Kerr ISCO is shifted under the effect of the conservative self-force:

$$\Omega_{\rm isco} = \underbrace{\Omega_{\rm isco}^{\rm kerr}(\chi)}_{\substack{\rm test \ mass \\ \rm result}} \left\{ 1 + \underbrace{q \ C_{\Omega}(\chi)}_{\substack{\rm self-force \\ \rm correction}} + \mathcal{O}(q^2) \right\}$$

• From the condition $\tilde{z}''(\Omega_{isco}) = 0$, the frequency shift reads

$$C_{\Omega} = rac{1}{2} \, rac{z_{gsf}''(\Omega_{isco}^{kerr})}{E''(\Omega_{isco}^{kerr})}$$

Summary and prospects

- EMRIs are prime targets for the planned eLISA observatory
- Highly accurate template waveforms are a prerequisite for doing science with GW observations
- We computed the shift in the Kerr ISCO frequency induced by the conservative piece of the GSF
- This result provides an accurate strong-field "benchmark" for comparison with other methods (PN, EOB)
- Future work: beyond circular equatorial orbits