Le futur repère de référence céleste international ICRF3 et la synergie avec Gaia

> AGN astrophysics

Summary

- Until 1997
 - IAU fundamental celestial reference frame based on star positions measured by optical astrometry
 - Last realization: FK5 catalog, consisting of 1535 stars brighter than magnitude 7.5
- Since 1998
 - IAU fundamental celestial reference frame based on quasars
 - Located at cosmological distances, hence no proper motions, and highly compact
 - Position measured by VLBI (Very Long Baseline Interferometry) with mas accuracy
 - ICRF (International Celestial Reference Frame) adopted by IAU in 1997, in use from 01/01/1998 to 31/12/2009
 - ICRF2 adopted by IAU in 2009, replaced ICRF on 01/01/2010

VLBI principle

- VLBI delay τ measured with a precision of 10 ps (3 mm)
- 6000+ VLBI sessions carried out since 1979, each 24-hour long
- 2 to 20 radiotelescopes used in each session
- > 10 millions VLBI delay measurements acquired

VLBI networks: IVS, EVN, VLBA

Journées de la SF2A 2017 - Paris - 4-7 Juillet 2017

P. Charlot

Observatoire Aquitain

Applications of ICRF

• Underlies every position determination in astronomy

- Extragalactic and Galactic objects
- But also Solar System objects: ephemerides tied to ICRF

Knowledge about the Earth

- Rotation, precession/nutation
- Plate tectonic motions
- Earth's interior (liquid and solid core)

Spacecraft navigation

- Measurement of spacecraft positions relative to angularly-close quasars
- Corrections of trajectories
- AGN astrophysics

ICRF and ICRF2

ICRF=International Celestial Reference Frame

- Based on positions of extragalactic radio sources measured by VLBI
- Observations acquired from various VLBI programs mostly run by the IVS (International VLBI Service for geodesy and astrometry) and VLBA

	ICRF	ICRF2
Frequency (GHz)	8.4 / 2.3	8.4 / 2.3
Nb of observations	1.6 Million	6.5 Million
Time range of obs.	1979-1995	1979-2009
Nb of sources	609	3414
Nb of defining sources	212	295
Noise floor (µas)	250	40
Adoption by IAU	1997	2009

<u>Note:</u> ICRF2 includes data from the VLBA Calibrator Survey (VCS), a series of 6 multi-session S/X band astrometry campaigns

Towards ICRF3

- IAU Working Group formed in 2012 to build ICRF3 for presentation at IAU 2018 General Assembly
- Main goal: produce state-of-the-art VLBI reference frame to serve as reference for aligning the Gaia frame, allowing comparison of optical and radio positions at < 100 µas
- Organization of the work
 - > 2012-2015: focus on the observing programs, i.e. acquiring proper new VLBI data
 - > 2015-2018: focus on building the frame
- New feature: observations not only at S/X band (2.3/8.4 GHz) but also now at K band (24 GHz) and X/Ka band (8/32 GHz)

ICRF3 Working Group

P. Charlot (Chair, LAB)	A. L. Fey	Z. Malkin
E. F. Arias (BIPM)	R. Gaume	A. Nothnagel
D. Boboltz	D. Gordon	M. Seitz
J. Boehm	R. Heinkelmann	E. Skurikhina
S. Bolotin	C. Jacobs	J. Souchay (SYRTE)
G. Bourda (LAB)	S. Lambert (SYRTE)	O. Titov
A. de Witt	C. Ma	

2012-2015: WG chaired by C. Jacobs 2015-2018: WG chaired by P. Charlot

10

P. Charlot

11

Timeline for ICRF3

- 2016 September 01
 - Prototype ICRF3 catalogs made by different members of the WG
 - Including data up to 30 April 2016
- 2017 June 30
 - Second round of catalogs
 - Including data up to 30 April 2017
- 2017 October 15
 - Decide on final ICRF3 configuration
- 2018 January 01
 > Produce final ICRF3
- 2018 (January-June)
 - Extensive checks of ICRF3
 - Prepare IAU resolution, write Technical Note and ICRF3 paper
- 2018 August: presentation of ICRF3 at IAU GA for adoption

4262 sources at S/X band (2.3/8.4 GHz)

Errors vs number of observations

Figure courtesy of Lambert and Arias

- Identification of a list of transfer sources from ICRF2 to ICRF3 to maintain the orientation of the frame
 - Default list = 295 ICRF2 defining sources, but may be adjusted
- Treatment of Galactic aberration:
 - ∘ Magnitude: ~ 5 µas/yr \rightarrow 100 µas after 20 years
 - IVS Working Group on Galactic aberration (formed October 2015) to make recommendation on dealing with this effect.
- Identification of ICRF3 defining sources
 - Primary criteria: source structure index + position stability
 - Optical brightness as secondary criterion

 Decision on whether ICRF3 should be single-frequency, multi-frequency or combined

Source morphology on VLBI scales

P. Charlot

Source position stability

Journées de la SF2A 2017 - Paris - 4-7 Juillet 2017

P. Charlot

Journées de la SF2A 2017 - Paris - 4-7 Juillet 2017

Observatoire Aquitain

Comparison between ICRF3 S/X prototype catalog and Gaia DR1

$$\Delta \alpha = A_1 \cos \alpha \sin \delta + A_2 \sin \alpha \sin \delta - A_3 + D_\alpha (\delta - \delta_o)$$

$$\Delta \delta = -A_1 \sin \alpha + A_2 \cos \delta + D_\delta (\delta - \delta_o) + B_\delta$$

Journées de la SF2A 2017 - Paris - 4-7 Juillet 2017

P. Charlot

AGN astrophysics

Urry and Padovani (1995)

« Core shift » in AGN

- Radio emission originates from the jets
- Optical emission originates from the accretion disk and/or jets

Lobanov (1996)

P. Charlot

21

Summary

• Preparation for ICRF3 going well, on time for IAU 2018

	ICRF	ICRF2	ICRF3
Frequency (GHz)	8.4 / 2.3	8.4 / 2.3	tbd
Nb of observations	1.6 Million	6.5 Million	> 10 Million
Time range of obs.	1979-1995	1979-2009	1979-2017
Nb of sources	609	3414	4000-5000
Nb of defining sources	212	295	tdb
Noise floor (µas)	250	40	?
Adoption by IAU	1997	2009	2018

- ICRF3 will have a larger number of sources, be more accurate and have a more uniform precision in position compared to ICRF2
- Comparison of ICRF3 and Gaia positions at the few 10 µas may provide insights into the AGN geometry