Modélisation de la rotation de Mercure pour la mission Bepi-Colombo

Benoît Noyelles

Collaborateurs : S. D'Hoedt, J. Dufey, A. Lemaître & N. Rambaux

Facultés Universitaires Notre-Dame de la Paix & FNRS Namur, BELGIQUE

GRAM 2010 - Nice

Mercure

- Résonance spin-orbite 3 : 2
- Excentricité ≈ 0.206
- Période orbitale: 88 jours (rotation en 58 jours)
- Période du périhélie: ≈235000 ans
- Cible de 2 missions spatiales: MESSENGER et Bepi-Colombo (2014)

Observations de sa rotation

Ce qu'on sait

- 1965 : Mercure est en résonance spin-orbite 3 : 2 (Pettengill & Dyce)
- \bullet 2007 : Librations en longitude de 88 jours à 35.8 \pm 2 arcsec (Margot et al.)
 - \rightarrow Mercure a un noyau liquide Obliquité = 2.11 \pm 0.1 arcmin

Ce qu'on espère observer

- Perturbations planétaires dans les librations en longitude
- Champ de gravité de Mercure (J₂, C₂₂, S₂₂, etc.)

Observations de sa rotation

Ce qu'on sait

- 1965 : Mercure est en résonance spin-orbite 3 : 2 (Pettengill & Dyce)
- 2007 : Librations en longitude de 88 jours à 35.8 \pm 2 arcsec (Margot et al.)
 - \rightarrow Mercure a un noyau liquide Obliquité = 2.11 \pm 0.1 arcmin

Ce qu'on espère observer

- Perturbations planétaires dans les librations en longitude
- Champ de gravité de Mercure (J_2 , C_{22} , S_{22} , etc.)

Introduction d'un noyau fluide

Première approximation: un noyau liquide sphérique

- Pas d'interaction noyau-manteau
- Mercure = un manteau avec une cavité vide

Conséquences

- Devrait convenir pour le mouvement à court terme (librations en longitude)
- Mercure doit être considérée comme rigide sur le long terme (variations de l'obliquité)

Introduction d'un noyau fluide

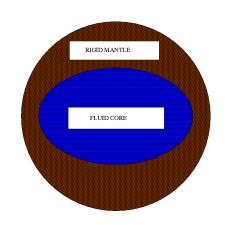
Première approximation: un noyau liquide sphérique

- Pas d'interaction noyau-manteau
- Mercure = un manteau avec une cavité vide

Conséquences

- Devrait convenir pour le mouvement à court terme (librations en longitude)
- Mercure doit être considérée comme rigide sur le long terme (variations de l'obliquité)

Un noyau triaxial



$$\epsilon_{1} = \frac{2C - A - B}{2C} = J_{2} \frac{MR^{2}}{C}$$

$$\epsilon_{2} = \frac{B - A}{2C} = 2C_{22} \frac{MR^{2}}{C}$$

$$\epsilon_{3} = \frac{2C_{c} - A_{c} - B_{c}}{2C_{c}}$$

$$\epsilon_{4} = \frac{B_{c} - A_{c}}{2C_{c}}$$

$$\delta = C_{c}/C$$

Le modèle dynamique

- Un noyau fluide de densité uniforme couplé avec un manteau rigide (modèle de Poincaré-Hough, cf. Touma & Wisdom (2001))
- Les ellipsoïdes d'inertie du manteau et du noyau sont alignés
- La rotation de Mercure est perturbée par l'attraction gravitationnelle du Soleil

Le Hamiltonien du problème

$$\begin{split} \mathcal{H} & = & \frac{n}{2(1-\delta)} \Bigg(P^2 + \frac{P_c^2}{\delta} + 2\sqrt{PP_c} \big(\eta_1 \eta_2 - \xi_1 \xi_2 \big) + 2 \Big(P \frac{\xi_2^2 + \eta_2^2}{2} + P_c \frac{\xi_1^2 + \eta_1^2}{2} - PP_c \Big) \Bigg) \\ & + & \frac{n\epsilon_1}{2(1-\delta)^2} \Bigg(P \big(\xi_1^2 + \eta_1^2 \big) + P_c \big(\xi_2^2 + \eta_2^2 \big) + 2\sqrt{PP_c} \big(\eta_1 \eta_2 - \xi_1 \xi_2 \big) \Bigg) \\ & + & \frac{n\epsilon_2}{2(1-\delta)^2} \Bigg(P \big(\xi_1^2 - \eta_1^2 \big) + P_c \big(\xi_2^2 - \eta_2^2 \big) - 2\sqrt{PP_c} \big(\eta_1 \eta_2 + \xi_1 \xi_2 \big) \Bigg) \\ & - & \frac{n\epsilon_3}{2(1-\delta)^2} \Bigg(\delta P \big(\xi_1^2 + \eta_1^2 \big) + \Big(2 - \frac{1}{\delta} \Big) P_c \big(\xi_2^2 + \eta_2^2 \big) + 2\delta\sqrt{PP_c} \big(\eta_1 \eta_2 - \xi_1 \xi_2 \big) \Bigg) \\ & + & \frac{n\epsilon_4}{2(1-\delta)^2} \Bigg(\delta P \big(\eta_1^2 - \xi_1^2 \big) + \Big(2 - \frac{1}{\delta} \Big) P_c \big(\eta_2^2 - \xi_2^2 \big) + 2\delta\sqrt{PP_c} \big(\eta_1 \eta_2 + \xi_1 \xi_2 \big) \Bigg). \\ & - & \frac{3}{2} \frac{\mathcal{G}M}{nd^3} \Big(\epsilon_1 (x^2 + y^2) + \epsilon_2 (x^2 - y^2) \Big) \end{split}$$

Les fréquences propres

Les variables canoniques

$$\begin{array}{ll} p = I + g + h, & P = \frac{G}{nC}, \\ r = -h, & R = P(1 - \cos K), \\ \xi_1 = -\sqrt{2P(1 - \cos J)} \sin I, & \eta_1 = \sqrt{2P(1 - \cos J)} \cos I, \\ \xi_2 = \sqrt{2P_c(1 + \cos J_c)} \sin I_c, & \eta_2 = \sqrt{2P_c(1 + \cos J_c)} \cos I_c. \end{array}$$

ϵ_3/ϵ_1	0	0.1	1	3	3
ϵ_4/ϵ_2	0	0	1	3	0
T_u (a)	12.05800	12.05775	12.05772	12.05777	12.05773
T_v (a)	615.77	(long)	1636.43	1214.91	1216.09
T_w (a)	337.82	337.82	337.87	338.14	338.20
T_{z} (j)	_	58.630	58.619	58.585	58.585

Résonance exacte: 58.646 jours

Les fréquences propres

Les variables canoniques

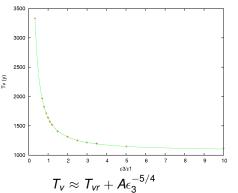
$$\begin{array}{ll} p = I + g + h, & P = \frac{G}{nC}, \\ r = -h, & R = P(1 - \cos K), \\ \xi_1 = -\sqrt{2P(1 - \cos J)} \sin I, & \eta_1 = \sqrt{2P(1 - \cos J)} \cos I, \\ \xi_2 = \sqrt{2P_c(1 + \cos J_c)} \sin I_c, & \eta_2 = \sqrt{2P_c(1 + \cos J_c)} \cos I_c. \end{array}$$

ϵ_3/ϵ_1	0	0.1	1	3	3
$\epsilon_{4}/\epsilon_{2}$	0	0	1	3	0
T_u (a)	12.05800	12.05775	12.05772	12.05777	12.05773
T_{v} (a)	615.77	(long)	1636.43	1214.91	1216.09
T_w (a)	337.82	337.82	337.87	338.14	338.20
T_z (j)	_	58.630	58.619	58.585	58.585

Résonance exacte: 58.646 jours

Librations libres de l'obliquité

L'influence d'une résonance



$$T_{v} = A\epsilon_{3}^{B} + C$$

$$A = 564 \pm 4.146$$

$$B = -1.25224 \pm 6.003 \times 10^{-3}$$

$$C = 1074.3 \pm 3.233$$

Les résultats

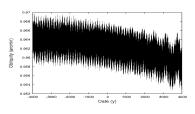
Le mouvement en longitude

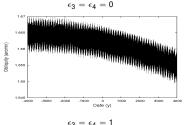
)
3
)
7
3
7
5
1
3
7

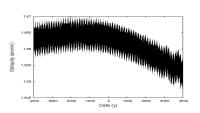
(Dufey et al. 2009, Peale et al. 2009)

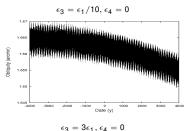
INDÉPENDANT DE LA FORME DU NOYAU

L'obliquité du manteau

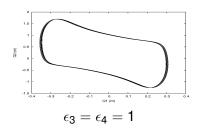


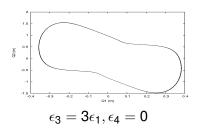






Le mouvement du pôle

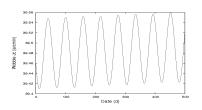


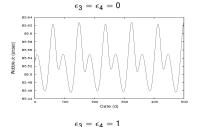


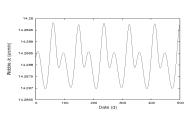
$$Q_1 = R_p \sin J_m \sin I_m [1 + (C_m - A_m)/C_m]$$

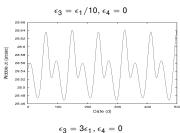
$$Q_2 = R_p \sin J_m \cos I_m [1 + (C_m - B_m)/C_m]$$

Le noyau









Notre participation dans BepiColombo

Mercury Orbiter RadioScience Experiment (MORE)

- Embarqué sur le MPO (Mercury Planetary Orbiter)
- Pls : L. less (Rome) & A. Milani (Pise)

Notre travail avec Pise

- Réalisation d'un simulateur des expériences de relativité générale, détermination du champ de gravité de Mercure et de sa rotation
- À Namur : on modélise la rotation

Inclusion de la rotation dans le simulateur

Notre travail

- Job : fournir la matrice de passage de l'écliptique J2000 au repère des axes principaux d'inertie de Mercure à toute date de la mission (ainsi que ses dérivées partielles)
- Objectif: inverser pour obtenir la taille du noyau ainsi que le moment d'inertie polaire

Problèmes techniques

- Modéliser à la fois les librations en longitude et l'obliquité
- Ne pas avoir de librations libres dans le modèle

Inclusion de la rotation dans le simulateur

Notre travail

- Job : fournir la matrice de passage de l'écliptique J2000 au repère des axes principaux d'inertie de Mercure à toute date de la mission (ainsi que ses dérivées partielles)
- Objectif: inverser pour obtenir la taille du noyau ainsi que le moment d'inertie polaire

Problèmes techniques

- Modéliser à la fois les librations en longitude et l'obliquité
- Ne pas avoir de librations libres dans le modèle

Élimination des librations libres

1ère idée : Introduction d'une dissipation

- Fonctionne très bien en longitude car dissipation "suffisamment" lente
- Ne fonctionne pas en obliquité

Solution: Ajustement des conditions initiales

- Décomposition de l'obliquité sous forme de séries sinusoïdales à longue période
- Ajustement de l'amplitude sous la forme

$$A = \frac{C/(MR^2)}{\beta + \gamma C_{20} + \delta C_{22}}$$

Conclusions et perspectives

Conclusions

- La forme du noyau ne peut pas être déterminée par des observations des mouvements longitudinaux et polaires
- La dynamique du noyau est soumise à la proximité d'une résonance
- L'obliquité devrait permettre de trouver le moment d'inertie polaire

Perspectives: en attente de MESSENGER...

- Insertion orbitale : 18 mars 2011
- Données des 3 flybys insuffisantes
- Lancement de BepiColombo : 2014

Pour en savoir plus...

- D'Hoedt S., Noyelles B., Dufey J. & Lemaître A., 2009, Determination of an instantaneous Laplace plane for Mercury's rotation, Advances in Space Research, 44, 597-603
- Dufey J., Lemaître A. & Rambaux N., 2008, Planetary perturbations on Mercury's libration in longitude, CM&DA, 101, 141-157
- Dufey J., Noyelles B., Rambaux N. & Lemaître A., 2009, Latitudinal librations of Mercury with a fluid core, Icarus, 203, 1-12
- Noyelles B., Dufey J. & Lemaître A., 2010, Core-mantle interactions for Mercury, MNRAS, 407, 479-496