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Abstract. Potential calculation is an important task to study dyreaiibehavior of test particles
around celestial bodies. Gravitational potential of ithag bodies is of great importance since the
discoveries of binary asteroids, this opened a new fieldsgarch. A simple model to describe
the motion of a test particle, in that case, is to considerigefirtomogeneous straight segment. In
our work, we take this model by adding an inhomogeneoushiigion of mass. To be consistent
with the geometrical shape of the asteroid, we explore ayodéicaprofile of the density. We esta-
blish the closet analytical form of the potential generditgthis inhomogeneous massive straight
segment. The study of the dynamical behavior is fulfilledhmsy wse of Lagrangian formulation,
which allowed us to give some two and three dimensional ®rbit
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|- Introduction

The discovery of irregular small bodies and binary astextick Ida and Doctyl, gave a rise
to the potential calculation. Many attempts have been mad@proximate the potential. [t],
Riaguas et al. proposed a homogeneous straight segmegre Ekl. described if2] the motions
around(433) Eros with the same homogeneous model. A polyhedron and mcr@s used
by Werner and Scheeres for aster¢id9 Castalia in3] and[4]. Ellipsoids, material points and
double material segment was used by Przemyslaw et [a] Bnd[6], as the model of irregular
elongated bodies. In our work we give a new idea to models denpial generated by an elon-
gated body. We consider a straight massive segment withblardensity. To be consistent with
the geometrical aspect of the asteroid, we use a parabaliteprOur work generalize that of
Riaguas et dll]. In the first part of this work, we establish the closet forrithe potential gene-
rated by an inhomogeneous massive straight segment. letbad part we study the dynamical
behavior of a test particle in the field of the straight segime conclude in the last part by the
numerical resolution of the differential equations of matiln this part we show some orbits in
two and three dimension.
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|- Potential calculation

We consider an inhomogeneous straight segment of I&igthd mass\/ which lies along
thex — axis, with a parabolic profile of linear mass density (Fig.1), regsed by

AMz) = —azx® +b (1)

in whicha andb are linked bya < % and M = —2al® + 20l
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Fig. 1: Left : Straight segment in reference frafi@ryz). Right : profile of density.

At a point P, the gravitational potential generated by the segment is :

U(P) = -G / dm @)

r

WhereG is the gravitational constantis the distance betwedn and the infinitesimal massn
located atH with abscissazy in the segment. Fig.2.

1. Expression o P = r (Fig.2) :
Let us consider an inertial reference fraffteryz), and let7 1, and 7', be the position
vectors of the end points of the straight segment. The posiector of a point of segment

is given by
T =HP=HH, +H P
then
7):7’_1>—1<1+x—H>?12
2 l
where

— —
T 192 = 2[633
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Fig. 2: Straight segment .
Next, define .
Tn
= (142

v=5+=)
as a new variable of integration witl) < v < 1.
After calculation we obtain

r? =0} + 4PV + v (ry — ] — AP) (3)

2. Expression oflm :
The infinitesimal masgm located at{ with abscissary is given by

dm = Nay)dry = 2l(—axt; + b)dv
Hence
dm = 21(—4al*v? + 4al’v + b — al®)dv 4)
By substituting(3) and(4) in (2) and developing the calculation we obtain

b—al?

V — VT e dv (5)

/ 2 7‘2 r2—4]2 ﬁ
\/ v+ V 412 + o

After some laborious calculation and simplification we aekithe closet expression of the
potential generated & :

Ul(ry, o) = 4al*G

16al’ (ry + 1) + 12al (ry — 1) (r7 —73) +
G
U(ri,re) = o 8al? (15 +11)* — 16alr 1,
—3a(ry —79)° (ro +11)° — 16al* + 32012

o (r2trz2y e 6
7’2-'-7"14-2[
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We defines = ry + 11, d = r; — r, andp = ror; as a auxiliary functions depending only on
distances; andr, of the particle to the end points of the segment.
The expressiof6) reduce to :

G

21
{12al3d2 — 16al®s + [8i2a (s® — 2p) — 3as?d® — 161%a + 32bI?] In (z t QZ)} (7)

(7) represent the gravitational potential generated by annmidgeneous straight segment with
a quadratic profile of density, this expression is our masulteto have more details and study
about se€7] Najid et al. The case of constant densityis a particular situation of7), if we put
a=0andb = 4 = X. We obtain the expressidn) in [1].

|11- Dynamical study

We plane to study the dynamical behavior of a test particléh unit mass, located a® in
the field of the inhomogeneous straight segment.
R(O,x,y, z) is the sidereal referential frame, with the cylindrical mtinates(p, ¢, x) as in
Fig.3.

N v

Fig. 3: Sidereal referential and the cylindrical coordinates.

The Lagrangian of the test particle is given by :

1 .
L= 5 <p2+p202—|—l‘2> —U(Tl,TQ)
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wherer; = \/p? + (z +1)* andry = \/p? + (z — 1)°.

The conjugate momentum arB,:= p, Py = 020 andP, = 7.
The Lagrange’s equation corresponding to the coordinée
oL ., OU(P
TE 02— ou(p) _
dp dp
The differential equation of motion correspondingtis given by

9 s+ 21
G 32al“ppIn (3—2[
320%p 4lps

52 — 412

) — dalps (3d* + 417)

p=pb®+ 8)

[81%a (s* — 2p) — 3as®d® — 161*a + 32b(°]

The Lagrange’s equation corresponding to the coordinae

oL ou(P)
or or
The differential equation of motion correspondingtis given by
(20 (zs — Id) (3d* — 41%) + 12lsd (Is — zd) + )
21
o Ga ) [s(zs—1d) (81" — 3d*) — 8l"z (5" — 2p) + 8l*sd — 35”d (Is — 2d)] In (z il 2z) ©)
~160%p B
2(xs—1d) [ 5, 5 - L 32002
i —2p) — — 161
\ ERTE 8l (3 p) 3s“d 60" + o )

The Lagrange’s equation corresponding to the coordithate
oL _
o0

The differential equation of motion correspondingtis given by

0

p?0 = A = cste (20)

The case of homogeneous profile of density; 0 andb = X =4I, lead to the equations

S 2usp
PR T b Al
. 2ux
F=—-——

Sp

We obtain the equatiof8) as in[1]. In our case of inhomogeneous straight segnignt(9) and
(10) are strongly non linear and coupled. It need a deep numéreatiment. In fact, it is out of
view to plane to work it out in an analytical way.
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V- Numerical integration

To have a deep insight about the dynamical behavior of thepteticle in the field of the
inhomogeneous straight segment, we have to §6ly&9) and(10). In this system of differential
equations the unknowns gre 6 and x. We derive some curves both, in the plan and in the space.

Fig.4, Fig.5 and Fig.6 give some orbits in the plan and in geee corresponding to different

initial conditions. We notice, in a qualitative point of wethe existence of many behavior , we
obtain the state :

— Collision,
— confined,
— not confined.
More analysis about the curves below are developéd iNajid et al.

o

Fig. 4: Trajectories in the planyz .
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Fig. 5: Trajectories in the plan:p.

Page 7



-0.01

-0.02

-0.03
05

0.08

0.06

0.04

0.02

-0.02

-0.04

—-0.06

Fig. 6: Trajectories in the spacey .
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V- Conclusion

In this work, we established the analytical expression efgbtential generated by a straight
segment with a quadratic profile of its density. This potntiodel in an accurate manner celes-
tial elongated bodies in the solar system. We derived somesiftrajectories) both in two and
three dimensions. They gave an overview of the dynamica\aehof massless test particle. A
deep study is fulfilled if7] Najid et al. by using the poincaré surface of section. Afterdchie-
vement of the dynamical behavior of a test particle in thelfadl that segment, fixed in space,
we plane, in a next future, to study the case where the segmientotation.
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