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Accuracy of observations improves
• BepiColombo, JUNO, JUICE (3GM and PRIDE), … :  main 

objective: internal structure of planets/satellites. Radioscience @ 
the level of cm for the range and !m/s for the Doppler!

• GAIA: astrometric observations @ the level of 10 !as!

• GRAVITY: astrometric observations around our galactic center 
@ the level of 10 !as!

• AGP/GAME: astrometric test of GR at the level of !as (around 
the Sun)!

• THEIA/NEAT: astrometric observations (exoplanets) at the level 
of ~ 50 nas- 0.1 !as
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Light propagation is crucial in the

1) Range observable

modelling of Sol. Sys. observations

Emitter

worldline

Transmitter

worldline

OA
(⌧A, ⌫A)

OB
(⌧B , ⌫B)

• Difference in proper time

• Depends on the difference 
in coord. time (amongst 
other parameters)

tB � tA

Range = c(⌧B � ⌧A)
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Light propagation is crucial in the

2) Doppler observable

modelling of Sol. Sys. observations

• Ratio of proper frequency D =
⌫B
⌫A

=
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• Wave vector at emission 
and reception needed
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Light propagation is crucial in the

3) Astrometric observable & VLBI

modelling of Sol. Sys. observations

Wave vector kµB

Emitter

worldline

Receiver

worldline

OA

OB

Eµ
h↵i

Local Ref. Syst.

or tetrad

• Direction of observation of the light ray in a local reference 
system (or tetrad)

nhii = �
E0

hii + Ej
hiik̂

B
j

E0
h0i + Ej

h0ik̂
B
j

• Wave vector at reception 
needed
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How to determine the light propagation ?
• At the geometric optics approximation: photons follow null 

geodesics
dkµ

d�
+ �µ

↵�k
↵k� = 0 kµkµ = 0

k

µ =
dx

µ

d�

Wave vector kµB

Wave vector kµA

Emitter

worldline

xA(t)

Receiver

worldline

OA
(tA,xA)

(tB ,xB)

OB

with                   the tangent vector

a Boundary Value Problem6



Methods to solve the null geodesic eqs.
• Full numerical integration of the null geodesic eqs. with a 

shooting method see A. San Miguel, Gen. Rel. Grav. 39, 2025, 2007
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Methods to solve the null geodesic eqs.
• Full numerical integration of the null geodesic eqs. with a 

shooting method see A. San Miguel, Gen. Rel. Grav. 39, 2025, 2007

see for example N. Ashby, B. Bertotti, CQG 27, 145013, 2010

• Use of the eikonal equation:  
   - perturbative solution for spherically symmetric space-time
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… and the Time Transfer Functions

• The (reception) Time Transfer Function - TTF - is defined by

see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004!
      P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008

• The TTF is solution of an eikonal equation well adapted to a 
perturbative expansion

tB � tA = Tr(xA, tB ,xB)
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• The TTF is solution of an eikonal equation well adapted to a 
perturbative expansion

tB � tA = Tr(xA, tB ,xB)

• The derivatives of the TTF are of crucial interest since

k̂
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@tB
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Range, Doppler, astrometric observables can be 
written in terms of the TTF and its derivatives
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Post-Minkowskian expansion of the TTF

• A pM expansion of the TTF:

see P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008

• Computation with an iterative procedure involving integrations 
over a straight line between the emitter and the spatial position 
of the receiver !

• Main advantages:!

- analytical computations relatively easy!

- very well adapted to numerical evaluation

• Example at 1 pM:

with            the straight Mink. null path between em. and rec.z↵(�)
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RAB

c
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Analytical results in Schwarzschild space-time

• A pM expansion of the TTF:!

and the corresponding derivatives have been computed up to the 
3rd pM order

see B. Linet and P. Teyssandier, CQG 30, 175008, 2014!
      P. Teyssandier, 2014, arXiv: 1407.4361

• A “simplified” iterative method has been developed for static 
spherically symmetric geometry

ds2 =

✓
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• In GR: � = � = ✏ = �3 = �3 = 1

T =
RAB

c
+

X

n>1

T (n)
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Analytical results in Schwarzschild space-time

• A pM expansion of the TTF:

see B. Linet and P. Teyssandier, CQG 30, 175008, 2014
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ln
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see E. Shapiro, PRL 13, 26, 789, 1964

see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004!
     S. Klioner, S. Zschocke, CQG 27, 075015, 2010
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Is it necessary to go to the 3rd order?
• In a conjunction geometry, at each order n, there are enhanced 

terms proportional to           

• Ex. with Earth-BepiColombo range (accuracy ~ 10 cm)  
⇒ 2pM term needed
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• Ex. with SAGAS: link between 
spacecraft in the outer Solar 
System to measure " at10-8  
⇒ accuracy at the mm level  

⇒ 3pM term needed

rc/R� T (2)
enh T (2)

 T (3)
enh

1 -5 m 37 cm 1 cm
2 -1.3 m 18 cm 0.6 mm
5 -21 cm 7 mm 15 µm

see P. Teyssandier, 2014, arXiv: 1407.4361  
      A. Hees, S. Bertone, C. Le Poncin-Lafitte, PRD 89, 064045, 2014

(1 + �)n

c c c
10 cm



• Ex. with light deflection for Sun grazing rays: AGP space mission 
(old GAME). Expected accuracy: !as 
⇒ 3pM term needed

see A. Hees, S. Bertone, C. Le Poncin-Lafitte, PRD 89, 064045, 2014!
      P. Teyssandier, B. Linet, proceedings of JSR 2013, arXiv:1312.3510
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Analytical result around axisymmetric bodies
• Influence of all the multipole moments Jn from the grav. potential

• Influence of Jupiter J2 on the JUNO Doppler  (1!m/s accuracy) 
and for GAIA (10 !as acc.)

see C. Le Poncin-Lafitte, P. Teyssandier, PRD 77, 044029, 2008 for a computation with the TTF!
or S. Kopeikin, J. of Math. Physics 38, 2587, 1997 for another approach
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• terms important for the data analysis for these missions
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What happens if the body is moving ?

• At first pM order, the TTF for uniformly moving bodies can 
easily be derived from the TTF generated by a static body

• All the analytical results computed for a static source can be 
extended in the case of a uniformly moving source

�(xA, tB ,xB) = �(1�NAB .�)�̃(RA + ��RAB ,RB)

� = v/c, � = (1� �2)�1/2

static TTFTTF in the 
moving case with

RXand depends on xX , �

15 see A. Hees, et al, PRD 08, 084020, 2014



Time Transfer around a moving body
• moving monopole:  

   - using the previous result:  
 
 
 
 
- also determined by other methods

see see A. Hees, et al, PRD 08, 084020, 2014!
      S. Bertone et al, CQG 31, 015021, 2014 for a pN expansion
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where �
Mp

represents the mass monopole contribution and �
Jpn

represents the mass multipoles contribution.
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(x) the Gegenbauer polynomial of degree l and of parameter �1/2.
Therefore, the multipole term of the TTF for the case of moving axisymmetric bodies is given by inserting (46)
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In order to compute the derivatives of the TTF in the case of moving bodies from Eq. (35), one also needs the

derivatives of the TTF in the static case. The derivative of the TTF in the case of a static monopole is known (see
for example [39]) and it is given by
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see S. Kopeikin, G. Schäffer, PRD 60, 124002, 1999!
      S. Klioner, A & A, 404, 783, 2003
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see S. Kopeikin, G. Schäffer, PRD 60, 124002, 1999!
      S. Klioner, A & A, 404, 783, 2003

• moving quadrupole: - using the TTF  
                             - with another method 

see A. Hees, et al, PRD 08, 084020, 2014

see S. Kopeikin, V. Makarov, PRD, 75, 062002, 2007
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Time Transfer around a moving body
• moving monopole:  

   - using the previous result:  
 
 
 
 
- also determined by other methods

see see A. Hees, et al, PRD 08, 084020, 2014!
      S. Bertone et al, CQG 31, 015021, 2014 for a pN expansion
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where �
Mp

represents the mass monopole contribution and �
Jpn

represents the mass multipoles contribution.
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Therefore, the multipole term of the TTF for the case of moving axisymmetric bodies is given by inserting (46)
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In order to compute the derivatives of the TTF in the case of moving bodies from Eq. (35), one also needs the

derivatives of the TTF in the static case. The derivative of the TTF in the case of a static monopole is known (see
for example [39]) and it is given by
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• moving quadrupole: - using the TTF  
                             - with another method 
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• moving axisymmetric bodies: see A. Hees, et al, PRD 08, 084020, 2014
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where �
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Therefore, the multipole term of the TTF for the case of moving axisymmetric bodies is given by inserting (46)

into the relation (34) and using the substitutions (29)
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In order to compute the derivatives of the TTF in the case of moving bodies from Eq. (35), one also needs the

derivatives of the TTF in the static case. The derivative of the TTF in the case of a static monopole is known (see
for example [39]) and it is given by
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see S. Kopeikin, G. Schäffer, PRD 60, 124002, 1999!
      S. Klioner, A & A, 404, 783, 2003

• moving quadrupole: - using the TTF  
                             - with another method 

see A. Hees, et al, PRD 08, 084020, 2014

see S. Kopeikin, V. Makarov, PRD, 75, 062002, 2007

• moving axisymmetric bodies: see A. Hees, et al, PRD 08, 084020, 2014

• moving body with arbitrary static multipoles: slow velocity app.
see M. Soffel, W.-B. Han, arXiv:1409.3743
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where �
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represents the mass monopole contribution and �
Jpn

represents the mass multipoles contribution.
The TTF corresponding to a static monopole is well known [22] and is given by
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Therefore, the multipole term of the TTF for the case of moving axisymmetric bodies is given by inserting (46)

into the relation (34) and using the substitutions (29)
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In order to compute the derivatives of the TTF in the case of moving bodies from Eq. (35), one also needs the

derivatives of the TTF in the static case. The derivative of the TTF in the case of a static monopole is known (see
for example [39]) and it is given by
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see S. Kopeikin, G. Schäffer, PRD 60, 124002, 1999!
      S. Klioner, A & A, 404, 783, 2003

• moving quadrupole: - using the TTF  
                             - with another method 

see A. Hees, et al, PRD 08, 084020, 2014

see S. Kopeikin, V. Makarov, PRD, 75, 062002, 2007

• moving axisymmetric bodies: see A. Hees, et al, PRD 08, 084020, 2014

• moving body with arbitrary static multipoles: slow velocity app.
see M. Soffel, W.-B. Han, arXiv:1409.3743

• arbitrarily moving point masses: numerical expression
see A. Hees, et al, PRD 08, 084020, 201416



Ex.: motion of Jupiter
• Influence of Jupiter velocity on the JUNO Doppler  (1!m/s 

accuracy) and for GAIA (10 !as acc.)
GAIA/VLBI

see A. Hees, et al, PRD 08, 084020, 2014

• depend highly on the orbit geometry: conjunction and 
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• In particular: should be reassessed for JUICE orbit
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Numerical evaluation of the TTF
• Iterative procedure involving integrals over a straight line: 

appropriate for numerical evaluation

see A. Hees, et al, PRD 89, 064045, 201418



Numerical evaluation of the TTF
• Iterative procedure involving integrals over a straight line: 

appropriate for numerical evaluation
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• At 1pM order: a simple integral to evaluate
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• Numerically efficient ; useful when no analytical solution can be 
found
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Numerical evaluation of the TTF

• Example: Doppler for 30 days of Cassini tracking between 
Jupiter and Saturn (“" experiment”)

see A. Hees, et al, CQG 29, 235027, 2012

• Effect of the " PPN and of Standard Model Extension sTY on 
Cassini Doppler
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• Numerical evaluation appropriate to evaluate effects due to 
alternative theories of gravitation

" -1 = 5 x 10-5

sTY = 10-5

for SME, see Q. Bailey and A. Kostelecky, PRD 74, 045001, 2006

19



Simulations of observations directly from metric

• New tool that performs Range/Doppler/Astrometric simulations from 
a specific space-time metric (orbit integration, clock model, light 
propagation, tetrad propagation,...) and fits of the orbital initial 
conditions in GR!

• Identification of incompressible signals due to the alternative theory: 
order of magnitude and signature that can eventually be observed in 
residuals of real data analysis!

• Very flexible approach: easy to change the gravitation theory (the only 
thing to change: the expression of the metric)!

• What are the effects of alternative theories of gravity on space 
observations ?

1 A. Hees, B. Lamine et al, CQG, 29/235027, 2012 20



Simulations of Messenger in SME
• SME: consider violations of the Lorentz symmetry!

• metric parametrizing a violation of Lorentz symmetry in the 
gravitational sector depends1 on           : does not enter PPN of fifth 
force formalisms!

• Simulations of two years of Earth-Messenger-Earth Range and Doppler 
link
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• Numerical identification of the linear combinations of SME parameters 
whose observations depend on

Proceedings of the Sixth Meeting on CPT and Lorentz Symmetry (CPT’13)

2

of interaction and an intensity.2 The area of the parameter space excluded
by experiments can be found in Ref. 3. It can be seen that very good
constraints are available except for small and large interaction distances.

Even if the constraints on these two formalisms are currently very im-
pressive, there are still theoretical motivations to improve them (for some
examples, see Ref. 4). Moreover, it is also very interesting to look for devia-
tions from GR in other frameworks than the two used so far. In particular, a
consideration of a hypothetical Lorentz violation in the gravitational sector
naturally leads to a parametrized expansion at the level of the action.5 The
Post-Newtonian metric resulting from this formalism (known as the Stan-
dard Model Extension - SME) is parametrized by a symmetric traceless
tensor s̄µ⌫ and di↵ers from the PPN metric.6 Until now, the only tracking
data used to constrain these SME parameters is the Lunar Laser Ranging
(LLR) data.7

In this communication, we show how spacecraft tracking data can be
used to constrain SME gravity parameters. For this, we determine the in-
compressible signature produced by SME on tracking observations. The
procedure and the software used to determine these signatures are pre-
sented in Ref. 4.

2. Simulations of tracking observations in SME

We consider three realistic situations : a two year radioscience link between
Earth and the Mercury system corresponding to Messenger data ; a 32 day
Doppler link between Earth and the Cassini spacecraft during its cruise
between Jupiter and Saturn corresponding to the conjunction experiment8

; and a 9 year radioscience link between Earth and the Saturn system
corresponding to Cassini data. For these three situations, we determine
the linear combinations of SME parameters the observations are sensitive
to, the signatures produced by these parameters on observations and the
sensitivity of these observations to SME parameters.

The radioscience (Range and Doppler) measurements of Messenger de-
pend on 4 linear combinations of the 9 fundamental parameters s̄µ⌫

s̄A = s̄XX � 0.72s̄Y Y � 0.28s̄ZZ (1a)

s̄TX (1b)

s̄B = s̄TY + 0.53s̄TZ (1c)

s̄C = s̄XY + 2.954s̄XZ � 0.26s̄Y Z . (1d)

The 32 days of Doppler data from the Cassini conjunction experiment

s̄µ⌫



Incompressible signature of SME on Messenger
• Signatures that would be observed in residuals of data analysis if SME is 

the real theory of gravitation but if data are analyzed in GR

s̄A = 10�10

• Can we identify such signatures in residuals of real data analysis ? 
Can we constrain these parameters ?
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Summary of results for SME
• Linear combinations involved in the situations considered determined1

• Expected sensitivities1:
Messenger Cassini (Saturn)

• To be compared with previous results obtained with LLR+interferometry2

2 J. Battat, J. Chandler, C. Stubbs, PRL, 99/241103, 2007 
   K. Chung, et al, PRD, 80/016002, 2009

8

TABLE V: Bounds resulting from combining our data with
the ones from lunar laser ranging as reported by Battat et al.
[25], assuming vanishing Lorentz violation in electrodynamics.

Coeff.

s̄TX (0.5 ± 6.2) × 10−7

s̄TY (0.1 ± 1.3) × 10−6

s̄TZ (−0.4 ± 3.8) × 10−6

s̄XX
− s̄Y Y (−1.2 ± 1.6) × 10−9

s̄XX + s̄Y Y
− 2s̄ZZ (1.8 ± 38) × 10−9

s̄XY (−0.6 ± 1.5) × 10−9

s̄XZ (−2.7 ± 1.4) × 10−9

s̄Y Z (0.6 ± 1.4) × 10−9

They can be combined with ours to increase the resolu-
tion of the limits.

Tab. V lists the results thus obtained. They repre-
sent the most complete bounds on Lorentz violation in
gravity, providing individual limits on the s̄ as well as
more components of s̄ and higher resolution than either
experiment. The only degrees of freedom of s̄JK that are
not bounded are s̄TT and the trace, which do not lead to
signals to first order in the Earth’s orbital velocity.

III. SIGNAL FOR HORIZONTAL
INTERFEROMETERS

In this section, we consider tests of gravity with hor-
izontal atom interferometers, including guided atom de-
vices. Testing LLI in gravity is a task that makes good
use of the features of such interferometers, in particular
long coherence times and hence high resolution. More-
over, since the signal for violations is a time–dependent
modulation, the stability of the interferometer on time
scales much larger than the modulation frequencies are
not a primary concern for such tests.

For simplicity, we shall again assume a vanishing of
Lorentz violation in electrodynamics throughout this sec-
tion.

A test of the LLI of gravity can be performed by mea-
suring a Lorentz-violating horizontal acceleration. These
accelerations are given by [22]

ax = −gi3s̄
xz − ω⊕

2R⊕ sin χ cosχ

+gi3s̄
Tz + gi3s̄

TxV z
⊕,

ay = −gi3s̄
yz + gi3s̄

Tz + gi3s̄
TyV z

⊕, (15)

where i3 = 1 − I⊕/(M⊕R2
⊕) ≈ 1/2. For the purpose of

this section, we can take az = g as well as a ≡ |a| ≈ g
to be constant. Such tests can, for example, be based
on a torsion pendulum, which is suspended off its center
of mass. Nevertheless, they might reach superior sensi-
tivity compared to vertical gravimeters such as the atom
interferometer discussed previously.

Compared to a conventional torsion pendulum, such
experiments involve special challenges associated with

maintaining the pendulum within the horizontal plane.
However, measurement of the horizontal accelerations
that are given by Eqs. (15) with atom interferometry
is possible using conventional horizontal interferometers.
Moreover, interferometers in the horizontal plane can
be built well using atom-chip or atomic waveguide tech-
niques. In contrast to atomic fountains, they allow long
pulse separation times Tp in a compact setup. It is there-
fore interesting to study the signals for Lorentz violation
in post-Newtonian gravity and electromagnetism for such
an interferometer.

We assume a horizontal Mach-Zehnder interferometer
with the laser beams pointing into a direction of

x̂ = (cos θ, sin θ, 0) (16)

in the laboratory frame. As before, the phase shift is
given by keffT 2

p (x̂ · g⃗), where the local gravitational accel-
eration g⃗ has vertical as well as horizontal components.

The calculation of the induced time-dependence of the
interferometer phase proceeds via the transformations
between the laboratory frame and the sun–centered stan-
dard frame. The fastest way to do this is probably by
analogy to the case of torsion balances that has been
considered in [22]; see appendix B. After all, both mea-
sure the accelerations given by Eqs. (15). As a result,
we can express the contribution of Lorentz violation in
gravity to the phase as

ϕ = keff i3gT 2
p

∑

n

([En sin αn − Fn cosαn] sinωnT

−[En cosαn + Fn sin αn] cosωnT ) . (17)

The amplitudes and phases in this expression are given
in Tab. VI. It is evident that horizontal interferometers
provide access to four independent linear combinations
of s̄JK (the same ones as vertical interferometers) and
sufficient data to determine all the s̄TJ .

IV. SUMMARY AND OUTLOOK

In this paper, we have presented atom-interferometry
tests of the local Lorentz invariance of post-Newtonian
gravity and electrodynamics. As a comprehensive and
quantitative model for violations, we use the standard
model extension [20, 21]. The relevant violations of LLI
in gravity are encoded by a tensor s̄ [22]; those for viola-
tions in electromagnetism are expressed by the matrices
κ̃e− and κ̃o+ [3]. The experimental signal for Lorentz
violation is a time-dependence of the local gravitational
acceleration as the Earth orbits in the solar system. We
discuss an experiment that has been performed by us [33]
as well as possible future experiments with horizontal in-
terferometer geometries.

Our experiment is a vertical Mach-Zehnder atom inter-
ferometer. It uses a bright source of cesium atoms in a
1-m high atomic fountain and a pulse separation time of
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data are presented in Table 1. One can see that the conjunction data are
not interesting to constrain SME. On the other side, Messenger and Cassini
data (while orbiting within the Saturnian system) are very interesting and
can improve the current LLR constraints on SME parameters7 by one order
of magnitude. This gives a strong motivation to consider a test of SME using
these datasets.

Table 1. Uncertainties reachable in estimation of SME parameters with the three
considered dataset.

(a): Messenger

Par. Uncertainties

s̄A 1.1⇥ 10�10

s̄TX 3.1⇥ 10�8

s̄B 1.4⇥ 10�8

s̄C 3.2⇥ 10�11

(b): Cassini conjunction

Par. Uncertainties

s̄D 3.6⇥ 10�7

s̄E 3.1⇥ 10�3

(c): Cassini in orbit

Par. Uncertainties

s̄F 8.6⇥ 10�11

s̄TX 1.2⇥ 10�8

s̄G 1.5⇥ 10�8

s̄H 2.3⇥ 10�11
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Results promising  
⇒ give strong motivations to do
the real analysis
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Conclusion
• The TTF is a very nice tool to compute the time transfer, the 

Doppler and astrometric (VLBI) observations

see A. Hees, et al, PRD 89, 064045, 2014

• Analytical results found (so far):  
- time transfer in Schwarzschild space-time at 1, 2, 3 pM order  
 
- time transfer around static axisymmetric body 
 
- time transfer around a slowly moving monopole 
 
- time transfer around uniformly moving axisymmetric body

• Useful to assess order of magnitude of different GR effects but 
also effects from alternative theories of gravitation

• Very efficient from a numerical point of view

see A. Hees, et al, CQG 29, 235027, 2012

see A. Hees, et al, PRD 08, 084020, 2014

see S. Bertone et al, CQG 31, 015021, 2014

see C. Le Poncin-Lafitte, P. Teyssandier, PRD 77, 044029, 2008

see B. Linet and P. Teyssandier, CQG 30, 175008, 2014
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